Theory for enzymatic degradation of semi-crystalline polymer particles
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In enzymatic recycling or biodegradation of semi-crystalline plastic waste, crystalline spherulites
embedded into an amorphous matrix hinder and slow down depolymerisation. When the enzymatic
depolymerisation temperature exceeds the glass transition temperature, these spherulites tend to
grow. The depolymerisation process is thus controlled by a competition between erosion of the
amorphous matrix from the particle surface and the growth of recalcitrant spherulites within the
particle bulk and at its surface. We present a geometric model that captures this competition,
together with an algorithm to solve the equations numerically. Our algorithm introduces a new
extension of Voronoi/Delaunay tessellation in space. We extract the parameters for the model from
experimental data on the enzymatic depolymerization by hydrolase LCC-ICCG of PET bottle flakes
and textile waste, in order to make a prediction of the observed degradation yield as a function of
time. Both the final yield and the degradation kinetics are correctly predicted. Most importantly, the
model clarifies how and to which extent nucleating agents, impurities, additives, and /or rapid crystal
growth present in the waste can undermine pretreatment efforts aiming to initiate depolymerisation

from a material with a low initial crystallinity.

This document is the unedited author’s version of a sub-
mitted manuscript subsequently accepted for publication in
"Macromolecules’. To access the final published article, see
https://doi.org/10.1021/acs.macromol.5c03444.

I. INTRODUCTION

Enzymatic depolymerization of plastics has emerged as
a promising route to enable a circular economy for poly-
meric materials [1-8]. By operating under mild, aqueous
conditions and exhibiting high selectivity, enzymes of-
fer a more sustainable alternative to conventional chem-
ical recycling processes [9]. In typical processes, plastic
material is mechanically broken (milled) into particles
of the size of a few hundred micrometers. These parti-
cles are then dispersed in water and brought into con-
tact with an enzyme, which adsorbs onto the particle
surface and catalyzes successive bond-cleavage reactions
that gradually erode the particle. As depolymerization
progresses, soluble monomers or oligomers are released
into the medium. Enzymes capable of cleaving the back-
bones of multiple classes of semi-crystalline polymers,
including polyesters [10], polyamides [11], and certain
polyurethanes [12], establish biocatalysis as a powerful
strategy for plastic recycling.
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Enzymatic depolymerization requires sufficient poly-
mer chain mobility, making reaction temperature a crit-
ical parameter. Depolymerization is most effective at
temperatures above the polymer’s glass transition tem-
perature (T,) and below its crystallisation tempera-
ture (T..). The optimal temperature depends on the poly-
mer: Poly(ethylene terephthalate) (PET) is typically de-
polymerised around 65-70°C [1, 2, 9] whereas aliphatic
polyesters with T, well below room temperature, such
as poly(e-caprolactone) and poly(1,4-butylene adipate),
can be efficiently degraded at milder temperatures (30—
40°C) [13-16).

A key feature of most commodity or high perfor-
mance engineering plastics is their semi-crystalline na-
ture, deliberately controlled during synthesis and pro-
cessing [17, 18], in order to achieve desirable proper-
ties such as mechanical strength and dimensional sta-
bility [19], gas barrier performance, and chemical re-
sistance [20]. Crystallinity, while crucial for perfor-
mance, reduces susceptibility to enzymatic depolymer-
ization: amorphous domains are amenable to enzyme-
catalyzed chain scission, whereas crystalline regions are
densely packed and energetically unfavorable for bond
cleavage, making them recalcitrant [1, 6, 16, 21].

The crystallinity problem can be mitigated for poly-
mers that crystallise slowly, such as PET or PLA, by an
additional pretreatment step before milling. If the plastic
particles are melted and rapidly cooled (quenched) before
milling, then they will be mostly amorphous. The cooling
conditions (e.g. melt temperature, cooling rate or cool-



ing bath temperature) and polymer molecular parame-
ters will determine the residual degree of crystallinity
and crystallite organisation and morphology. A mate-
rial made of shorter chains, which crystallise faster than
longer chains, exhibits a higher degree of crystallinity af-
ter quenching under identical conditions. Additionally,
real plastic waste streams contain an uncontrolled num-
ber of nucleating agents, as well as other additives such as
catalysts, plasticisers, dyes, pigments, impact modifiers,
or fillers, which favour nucleation and crystal growth.
For such highly formulated wastes amorphization by fast
melt cooling pretreatment is more challenging and less
efficient than for model polymers or less formulated or
contaminated wastes such as PET bottles [22].

The pretreatment by melting and milling serves as a
starting point for the enzymatic depolymerization. The
reaction temperature is above T, and below T, such that
any of the mentioned impurities or preexisting spherulites
inside the otherwise quenched amorphous matrix tend to
grow, forming partly crystalline spherulites which grow
and coalesce [23]. Their growth rate depends on how
close the reaction bath temperature is to T, and to T..
The number of spherulites and thus also their distance
is determined by the density of the nucleating impurities
or the density of preexisting spherulites. What follows
is a competition between spherulite growth (partial crys-
tallisation) and degradation of amorphous matrix in the
reaction bath. It is one of the aims of the theory pre-
sented here to predict how the depolymerization kinetics
and reaction yield will depend on the starting crystalline
structure.

The role of initial crystallinity and of its evolution
in the reaction bath in plastics degradation has mainly
been investigated in terms of the overall crystallinity
degree [24-29]. There are only few experimental stud-
ies [28, 30], and we are aware of one model [31], which
consider also the morphology of the materials while de-
grading.

Beyond the overall crystallinity, the morphology of the
spherulites and their growth dynamics plays a decisive
role for the quantitative outcome of the degradation pro-
cess. Figure 1 visualises the concept: The same volume of
crystalline material is distributed into different numbers
of spherulites. They have the same crystallinity degree,
but they will evolve differently during depolymerization.
Even if the spherulites grow at the same rate, it is visu-
ally evident that the many small ones are closer to each
other, and they will clump together earlier, and thus give
less time for the enzymes to degrade the amorphous ma-
trix between the spherulites. The model presented in this
paper quantifies this difference.

The simultaneous occurrence of depolymerization and
crystallization typically results in a non-monotonic tem-
perature dependence of the yield, with a maximum at an
intermediate temperature [22, 32, 33]. Due to the inher-
ent complexity of plastic waste streams, the location of
this optimum cannot be anticipated a priori, emphasiz-

Figure 1. Sketches representing the spatial configura-
tion of controlled preparation at two different temperatures
(left: high, right: low). They serve as starting points for the
degradation process. Spherulites in the right panel are cho-
sen five times smaller and 5% times more numerous (in three
dimensions) than in the left panel, but their volume fractions
are equal.

ing the need for a theoretical description that captures
the dynamic interplay between crystallization and enzy-
matic depolymerization and enables prediction of reac-
tion yields.

Our approach focuses on the initial plastic mor-
phology and explicitly accounts for thermally activated
crystallization during depolymerization. The growing
spherulites block enzymes’ access to residual amorphous
material and limit the overall yield. We present a geomet-
ric model that quantitatively describes the competition
between amorphous-phase degradation and spherulite
growth, providing both analytical and numerical solu-
tions. The model tracks three key volumes over time:
the spherulitic volume, the degraded amorphous matrix,
and the remaining amorphous volume. Its main outputs
are the ultimate fraction of polymer that will be degraded
and the kinetics of this process, quantities that cannot be
inferred from degradation or from crystallization alone.
By combining both effects, the model provides a predic-
tive framework for understanding and optimizing enzy-
matic depolymerization under recycling-relevant condi-
tions. We illustrate its application to PET from bottles
and textiles [22], demonstrating how morphological fea-
tures and processing history govern reaction yield and
kinetics, and suggesting experimental strategies to vali-
date and exploit the model for process optimization.

Since the model uses only geometrical quantities, such
as volumes and volume fractions, care has to be taken
when comparing it with experiments. The growing
spherulites are not entirely crystalline, but consist of
stacked crystalline layers with amorphous polymer chains
between them. The internal degree of crystallinity of a
PET spherulite is typically only 30-40%. It is there-
fore important to distinguish between the volume fraction
filled by spherulites (measured by light-scattering) and
the amount of crystallinity (measured by Fourier trans-
form infrared, FTIR, spectroscopy and by calorimetry).
We account for this difference below, in section IV B,
where we infer the model parameters from experimental



data.

Here we assume that the enzyme used is sufficiently
thermostable so that the observed temperature depen-
dence reflects polymer mobility and crystallization phe-
nomena rather than enzyme inactivation. We further as-
sume that plastic particles are suspended in an aqueous
medium and saturated with enzyme, ensuring enzyme
availability is not rate-limiting, and that kinetics are con-
trolled by polymer structure.

II. A GEOMETRIC MODEL

In order to capture the main ingredients of the degra-
dation evolution in the reaction bath, we formulate a sim-
ple Avrami-like [34, 35] geometric model for it. We take
spherical geometry for both the degrading particle and
the growing spherulites. The spherical geometry is not
meant to literally describe spheres in the experiments,
the model rather focuses on their relative overlap. We
expect our results to extend also to objects that have
a less well-defined boundary and different shapes. We
describe the degradation of the amorphous matrix of a
semi-crystalline particle by a sphere having at time t the
decreasing radius

Ry (t) = Rpo + Rht, with constant Rh <0. (1)
The radius decreasing linearly in time reflects that the
volume change of amorphous matrix material is propor-
tional to the area of surface exposed to enzymes. Em-
bedded in the amorphous matrix we place spherulites,
also modelled by spheres. The spherulites are assumed
to be non-degradable; we discuss this assumption below,
in section IV B. Each spherulite has a given initial radius
and is growing, because at the chosen temperature the
surrounding amorphous matrix tends to crystallise and
is thus transformed into spherulite volume. Also here we
assume a constant rate, such that a spherulite radius at
time ¢ is given by

Rs(t) = Rso + Ryt, with constant Ry > 0. (2)

We take the spherulite positions to be uniformly random
distributed within the amorphous sphere, such that ini-
tially they do not stick out. Their number is denoted
by N, and the density of centers (number per volume)
by N..

As the radii evolve in time, the embedded spherulites
come into contact and grow into each other, and the
amorphous matrix is degraded from the outside, finally
leaving clusters of spherulites as a remainder. The re-
sulting geometric shapes at some intermediate time ¢ are
shown in figures 2 and 3. The characteristic egg-like
shape of spherulites, with their long axis oriented towards
the center of the particle, is the result of intersection of
a growing and a shrinking sphere. There are three differ-
ent volumes in figure 2, the spherulite volume Vipp (%)

Figure 2. The three different geometric volumes used in the
model, at a given time ¢: Degraded volume Vieg(t) (light
green), amorphous volume Vo (t) (light blue) and spherulite
volume Vipn(t) (light red). The thick solid curves show the
interfaces between these volumes.

depicted in light red, the remaining amorphous vol-
ume Vo, (t) in light blue, and finally in light green the
volume Vjeg (t) having been degraded up to time ¢. These
three volumes always add up to the initial volume, which
will serve to normalise them,

47
Vam(t) + VSph(t) + Vdeg(t) = nglo =: Viot- (3)

Figure 2 shows also the interfaces between the different
volumes. The rate at which amorphous volume is con-
verted into spherulite volume is proportional to the area
of the amorphous—spherulite interface Sam spn (dark red
in figure 2),

%‘/sph (t) = Rs Sam,sph(t)- (4)
This quantity is (up to a constant scaling factor corre-
sponding to the internal degree of crystallinity of the
spherulites) accessible by calorimetry experiments, by
light-scattering or by Fourier transform infrared (FTIR)
spectroscopy [22, 36, 37]*. We model the spherulites to
be inert to enzymes: Their part sticking out of the amor-
phous matrix (thick black curves in figure 2) does not
change shape anymore, and the spherulites grow only in-
side the amorphous sphere. At the same time they block
access of enzymes to the amorphous matrix and thus ef-
fectively reduce the degradation rate. The degradation

* To be more precise, light-scattering measures the volume fraction
of spherulites, whereas Fourier transform infrared (FTIR) spec-
troscopy measures the total degree of crystallinity. The scaling
factor is constant in the temperature range used here. We thank
our reviewer for stressing this point, and we fully account for the
difference between these two quantities below, in section IV B.
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Figure 3. Evolution in time of the geometry used in the model:
The amorphous volume (blue) is degraded, the spherulites
(red) grow (and possibly nucleate) only within the amorphous
phase, finally remaining as connected clusters of egg-shaped
objects (black curves). The three rows correspond to different
growth rates of spherulites with the same degradation rate of
the amorphous phase.

of the amorphous volume is thus proportional to the area
of the exposed amorphous-solute interface Sam deg (thick
dark blue curves in figure 2),

d .
%Vdeg(t) == |Rh|Sam,deg(t)- (5)

Equations (1)—(5) are a system of ordinary differential
equations (ODE) for the three time-dependent volumes.
Before solving them let us look at two special cases where
they are decoupled.

We denote units of length and time by £ and T, re-
spectively.

A. Degradation alone

In the absence of spherulites, there is only degradation
of the wholly amorphous particle, and the relative volume
of the amorphous matrix is simply

G- (5).

(6)

T In the parameters of figures 4, 5, and 6 we do not fix values
for units of length and time yet. We focus on the difference of
timescales, not on their absolute value. We will fix the units when
comparing experimental and simulation data, in section IV.
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Figure 4. Evolution in time of relative amorphous and of so-
far degraded volume, without spherulites, according to equa-
tions (3) and (6). The timescale of degradation, 7, is defined
in equation (7).

with the time-dependent radius given by equation (1).
Small particles are degraded more quickly, even for the
same enzyme activity, because they expose more surface
relative to their volume. This effect can be seen in fig-
ure 4.

The timescale of degradation is the time on which a
purely amorphous particle vanishes, see equation (1). We
define it as

_ Rpo

Th ‘= ——-
| Ryl

(7)

B. Spherulite growth alone

The central ingredient of the model places it in the
class of Avrami models (sometimes also linked to the
name of Kolmogorov and others) [35]. These models cap-
ture the mutual overlap of spheres, placed randomly in
unbounded space at a density N. of centers per volume.
In the limit of many spheres, the common volume of the
spheres is found to be an exponential function of the sum
of individual volumes. The volume fraction Vipn(t)/Viot
thus starts at an initial (small) value, then increases, and
finally converges to unity, when all space is filled with
spherulites. The formula of it reads

VSph (t)
V:cot

= 1-exp(-N D). ®)

This function is plotted in figure 5 for the two densi-
ties of figure 1 (but without boundary and therefore no
degradation). The two different initial states, although
having the same volume fraction and the same growth
parameter R, converge at very different timescales.
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Figure 5. Evolution in time of relative spherulite volume in
bulk, according to equation (8). The timescale of spherulite
growth, 7, is defined in equation (9). Top panels: spatial
sketches at chosen times.

In order to identify the relevant timescale for spherulite
growth, let us first look at a rather dilute case, where
spherulites are mostly well separated initially (N, < 1),
at the time when particles were put into the reaction
bath. They all start with the same radius R, and
grow at the same rate R,. After a typical time 75 the
spherulites are not well separated anymore but start to
grow into each other. It is

1 (1.28
Tg i — —

Ry \ ¢/N|

The quantity in parentheses is referred to as the lig-
ament thickness in the context of toughening of poly-
mers [38, 39]. For the same initial spherulite volume
fraction Vipn(0)/Vier =~ N, dm R‘30 we can have different
timescales 75, as explalned above For the examples in
figure 1 we expect a ratio of five of their respective val-
ues. If there were no degradation, we would obtain the
filling curves in figure 5.

- sto>. 9)

When we look at spherulites not in unbounded space
but inside the degrading particle, the Avrami approach
leading to equation (8) becomes inapplicable for two rea-
sons: First, the spherulite volume inserted into the expo-
nential function in equation (8) is to be corrected when
it is only partly inside the particle. Second, and more
importantly, there is a subtle implicit assumption under-
lying equation (8), namely that the spherulites have to be

uniformly distributed in space. The boundary of the par-
ticle breaks this uniformity, and a spherulite close to it
will not be isotropically surrounded by other spherulites.
As a result, the function (8) does not hold.

C. Coupled growth and degradation

In the general case, when spherulites grow within the
eroding particle, the growth curves in figure 5 are limited
by the decreasing curves in figure 4 because spherulites
cannot grow outside the amorphous matrix. At the same
time also the degradation of amorphous matrix is reduced
because the spherulites block the access of enzymes to it.

The model equations (1)—(5) express this mutual
influence of spherulites and degradation. They re-
sult in three volumes as functions of time, namely
in spherulite volume Vipn(t), in so-far degraded amor-
phous volume Vjeg(t), and in remaining amorphous vol-
ume Vy (). The combined dynamics leads to a coupled
pair of curves, one for growth, one for degradation. The
two curves join each other at the end of the process when
Vam(t) vanishes. Figure 6 shows these curves for four
different cases. The three volumes Vipn(t), Vam(t), and
Vaeg(t) are the vertical distances between curves and co-
ordinates axes, respectively. Since the three volumes add
up to the initial total volume Vi, plotting them together
in one graph seems the natural way to present the solu-
tion, and it allows also to see their relation at once. At
early times, the curves in figure 6 resemble those in fig-
ures 4 and 5, but then growth and degradation mutually
influence each other.

Due to the degradation, the final spherulite volume is
not the total volume, but some fraction of it. Its termi-
nal value tells us what portion of the amorphous matrix
has been degraded and what portion crystallised. This
fraction and the typical time when it is reached are the
main quantities of interest, in particular how they de-
pend on the parameters Rp, Rs, Rpo, Rso, and N.. In
reality, these model parameters depend themselves on the
materials used, on the temperature, and on the way the
sample was prepared.

The top panel of figure 6 shows the influence of whether
the initial crystalline volume is split into many small
spherulites or few big ones. We thus come back to the
initial question raised around figure 1: Is the overall ini-
tial crystallinity sufficient to predict the outcome of the
degradation process or are there other important param-
eters to consider? Here, the corresponding model pa-
rameters N! and Ry play an additional, decisive role.
In this simulation we constrain the initial crystallinity to
the same value, but when the same initial volume is split
into many small spherulites, less material is finally de-
graded. From the different pairs N}, Ryo we obtain two
different timescales 7, which compare differently with the
given timescale 73,.
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Figure 6. Numerical solution of the model: evolution in time
of the three volumes Vipn(t), Vaeg(t), and Vam(t). Upper
panel: for the same 75, and different 75, shown are the two
cases of figure 1; 7 is varied by varying N., Rso, while keep-
ing the initial volume constant. Lower panel: for the same 75
and different 75, by varying Rpo. All volumes are normalised
by Viot. Viph/Vios is drawn as dashed curves, with values re-
ferring to the left axis, while Vieg/Viot is drawn as continuous
curves referring to the right axis. Vam/Vios is the vertical dis-
tance between the pairs of curves, according to equation (3).

The lower panel of figure 6 shows the effect of different
timescales 75, as compared to a single 75. This corre-
sponds for example to different sizes Rpo of particles,
obtained from finer/coarser milling. As expected, small
particles are degraded more efficiently, both in final yield,
and in timescale.

In the model we did not specify units of space and
time yet. The curves do not actually depend on the five
parameters given, but only on three dimensionless ones.
One choice for the set of dimensionless parameters would
be Rg/Rpn, Rso/Rno, and N.R3.. The same curves can
be obtained also from different sets of parameters: For
example, a bigger particle can be compensated by bigger
spherulites, which have to be less numerous in order to
keep the volume fraction unchanged. We will fix units
of length and time in section IV when extracting model

parameters from experimental data.

III. NUMERICAL ALGORITHM

Our approach to obtain volumes as a function of time
is to take a randomly chosen initial geometric configura-
tion, that is a fixed finite set of sphere centers and initial
radii, and discretise the evolution equations (1), (2) for
the radii. We present in this section a new numerical al-
gorithm devised to efficiently obtain at each time-step all
the required geometric volumes, surface areas, and curve
lengths. In particular, the surface areas on the right-hand
sides of equations (4) and (5) are necessary.

A. Double tessellations of space

The main task of the numerical algorithm is to take
into account the overlaps of spherulites without counting
them twice or more. We use a Voronoi tessellation [40]
of space for this, in which every Voronoi cell corresponds
to one sphere. The Voronoi tessellation must be adapted
to the positions and to the radii of the spheres. Our
implementation makes use of the numerical framework
CGAL [41, 42] because it allows to treat weighted Delau-
nay/Voronoi tessellations of spheres which all have dif-
ferent radii (sometimes also referred to as regular tessel-
lation); this reflects the possibility that spherulites can
vary in their initial radius, or even nucleate at later times.

The weighted tessellation captures all the mutual in-
tersections between growing spherulites. The usual
weighted tessellation, however, only considers spheres
being outside each other, it does not provide the in-
tersections of the amorphous sphere with the spherulite
spheres inside. We present here a new algorithm, which
is an extension of the usual weighted triangulation. Ge-
ometrically, the situation can be seen as a “double” ori-
ented and weighted tessellation, where the Voronoi cells
of spherulites are all contained in the Voronoi cell of the
amorphous one. This situation is depicted in the right
column of figure 7.

The middle row of figure 7 visualises the construction
of how a Delaunay/Voronoi pair of tessellations can be
translated into a lower-convex-hull problem in a space
that has one additional “lifted” coordinate [43, 44]. The
visualisation is limited to a single spatial dimension, plus
the lifted one; this one-dimensional tessellation is shown
in the lowest row of figure 7. The extension to two
and three spatial dimensions requires geometric abstrac-
tion in the reader’s imagination: for the numerical re-
sults in this paper we always used three spatial dimen-
sions. The left column of figure 7 depicts a simple De-
launay /Voronoi pair of tessellations: The spatial coordi-
nates (z,y) of each point are lifted to a paraboloid, turn-
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Figure 7. Visualisation of three types of Delaunay/Voronoi tessellation pairs. The input spheres are shown as black circles,
Delaunay tessellations are drawn in red, with little triangles at vertices, and Voronoi tessellations are drawn in blue, with
little squares at vertices. Input spheres that are not part of the Delaunay tessellation have open triangles at their center.
The left column shows ordinary Delaunay/Voronoi, where all spheres have the same radius; the middle column is a weighted
Delaunay/Voronoi tessellation with differently sized spheres; and the right column shows a double oriented and weighted
tessellation with the dashed sphere having the others on its inside instead of the outside. The Voronoi cell corresponding to
the dashed sphere is also drawn with dashed lines. The top row gives some examples of two-dimensional tessellations. The
middle row visualises how Delaunay/Voronoi tessellations can be constructed using coordinates lifted to a paraboloid and
vertically shifted according to the weight of the points (lines with upwards pointing arrows). The Voronoi vertices result from
a lower convex plane construction in lifted space (downwards pointing arrows). The method works in any spatial dimension,
but visualisation is here limited to one spatial dimension, that is why we show the one-dimensional tessellation corresponding
to the paraboloid construction in the bottom row.

ing into (,y, 2% + y?). The lower convex hull (depicted
in red) of these points defines which point is a Delau-
nay vertex, and which ones are neighbors. Bringing this
hull down to the (z,y) coordinates defines the Delaunay
cells. In each lifted point we construct a tangent plane
to the paraboloid (depicted in blue), which intersect and
together form another convex hull. Bringing this second
hull down to the (z,y) coordinates defines the Voronoi
vertices and cells.

The middle column of figure 7 shows the effect of dif-
ferent radii on the construction. We lower the lifted co-
ordinate of input spheres by their squared radius, also
called “weight”, to (z,y, % +y? —r?), and take again the
lower convex hull to find the Delaunay cells. The weights
have influence on who is neighbor to whom, and it can
even happen that a sphere does not contribute to the tes-
sellation at all, because it is too small and too close to
a bigger one (see the open triangles in panels e,h). The



tangent planes to the paraboloid are lifted by the sphere
weights, thus passing through (z,y, 2%+ y? +72). Again,
their intersections define the Voronoi tessellation. Ob-
serve that the lifted planes’ intersections coincide with
the intersection lines of spatial circles.

The right column of figure 7 shows the addition of
the amorphous sphere (dashed). This is the situation
we have to address. Our algorithm consists in combin-
ing two tessellations, one from the spherulites only, and
one into which we insert also the amorphous sphere. We
can intersect the two tessellations only if they have some
outermost vertices in common: If necessary, we surround
the whole ensemble with zero-weight dummy points such
that there are always common outermost Delaunay ver-
tices. The two tessellations form a closed body in lifted
coordinates, as is visible in panel (f) of the figure. The
same is true of the body formed by vertically shifted tan-
gent planes. Both bodies appear as two overlaying tes-
sellations when projected down from lifted coordinates
to space, see panels (i) and (c). As a result, there is
a Voronoi cell dual to the shrinking amorphous sphere
(blue dashed), which is partitioned into Voronoi cells,
each dual to one growing spherulite. This double tessella-
tion allows to measure surface areas of spherulites embed-
ded into the amorphous matrix, and also the lengths of
triple-lines of growing spherulites, shrinking amorphous
particle, and the outer void.

B. Geometric measures

At every time step, we measure several geometric
quantities, namely the volume of embedded spheres,
the area of the amorphous—solute interface, the area of
the amorphous—spherulite interface, and the arc lengths
of the amorphous—spherulite-solute interlines. This is
achieved by cutting each Voronoi cell into wedge-shaped
simplices, making use of the right angles between Delau-
nay edges and Voronoi faces, and between Delaunay faces
and Voronoi edges. In such an orthogonal simplex the
contained spherical volume, spherical surface, and circu-
lar arcs are known analytically [42, 45, 46]. We add up
these contributions from every simplex of every Voronoi
cell of the tessellation. In the sum, each contribution
carries a sign which depends on how the Voronoi face
cuts the Delaunay edge, on how the Delaunay face cuts
the Voronoi edge, and on whether the Voronoi cell corre-
sponds to the amorphous particle or not.

During the time-stepping, the arc lengths of
amorphous—spherulite—solute interlines are integrated to
yield the surface area sticking out of the particle (black
in figure 2), the amorphous—spherulite interface area is
integrated to give the spherulite volume, and the area of
the amorphous—solute interface is integrated to give the
degraded volume.
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Figure 8. Degradation of purely amorphous nanoparticles.
Experimental data taken from Welzel's thesis [16, Fig. 5-
10]. PPeT is polypentylene terephthalate, consisting of 1,5-
pentanediol and terephthalic acid. SP 4/6 is a saturated
polyester consisting of 1,4-butanediol and adipic acid. SP 4/8
is a saturated polyester consisting of 1,4-butanediol and
suberic acid.

IV. FINDING MODEL PARAMETERS FROM
EXPERIMENTS

The most noble aim of any model is to be predictive in
the sense that it can guide experiments. Here, for given
experimental parameters the model provides the final
degradation percentage and the timescale. Reversely, if
used as a fitting method, it can provide the model param-
eters for given experimental degradation/growth curves.
Our plan for this section is to obtain the degradation pa-
rameters Rpo, Ry from data without spherulite growth,
and to obtain the spherulites parameters N, Ry, Rs
from growth experiments without degradation. The ex-
perimental procedure and materials are described in ref-
erence 22.

A. Degradation parameters

In most cases degradation and growth occur together,
which is the whole point of the model. There is one ex-
ception, though. Welzel [16] observed that if the plastic
particles are small enough, up to 200nm, they are to-
tally amorphous. Her two main arguments are that the
degradation rates do not depend on preparation temper-
atures, and that the cleaving energies are the same as
for liquid polymers [16, p. 77]. For these nanoparticles
she measured the degradation, and we show her data
in figure 8. For this degradation, Welzel proposed and
confirmed the same degradation evolution as we do in
equation (1), where the radius decreases linearly in time.
Data and model match very well.
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Figure 9. Schematic sketch of the degradation process hap-
pening in two stages: First the degradation of main amor-
phous matrix, then the degradation of amorphous material in
the spherulites which grew in the first stage and were released
into the solute. These curves do not come from numerical
modeling but are illustrative sketches.

B. Non-crystalline material in spherulites

A major simplification done in the model concerns the
definition of spherulite material. In the model any point
in space is either in a spherulite, or in the amorphous
matrix, or degraded, and all material in the spherulites
is effectively taken as “crystalline”. In experiments this
is not absolutely true [17, page 176]. When we measure
the degree of crystallinity by isothermal calorimetry, to-
gether with a DSC scan at the end [22], then even in sam-
ples in which spherulites have grown to cover all space,
we do not measure a degree of crystallinity of 100%, but
rather 30%. This is caused by internal structure of the
spherulites which comprises constrained amorphous poly-
mer segments [47, 48] as loops and chains joining crys-
talline lamellae. The DSC experimental method mea-
sures only the fusible, crystalline part of their filling but
not the amorphous part.

In order to overcome this discrepancy, we need to
rescale the measured crystallinity to arrive at the
spherulite volume. We take the spherulites to be crys-
talline to a certain percentage, which does not change
with temperature, and which is constant in time. It can
therefore be read off from the terminal plateau values
at 75°C in figure 10, where we can assume that all space
is covered by spherulites. For example, the PET bot-
tles treated at 75°C go up to a terminal crystallinity de-
gree of A = 27%. At the end, all volume is filled by
spherulites, thus Vipn/Vior = 1. For those data lines in
figure 10 which do not reach the plateau level in the ob-
servation time, we assume the same final level as their
counterparts at higher temperatures: It is the same ma-
terial and underwent the same preparation. These values
are marked with a symbol (¥) in tables (11) and (12).

Another consequence of the partial order within
spherulites is they are not completely inert to enzymes
but will be degraded as well, however on a longer

¢ PET textile, 75°C x
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Figure 10. Symbols: Experimental isothermal calorimetry
data for crystallinity growth in PET particles, in buffer, with-
out degradation. The particles are two different plastic waste
types, from bottles or from textiles, and are crystallised at
different temperatures [22]. Dashed curves: Fits according to
equation (10), resulting in the optimal parameters given in
table (11).

timescale. Welzel [16] found a timescale at least five times
longer than for the amorphous matrix. We understand
the degradation as a two-stage process in which first the
amorphous matrix is degraded and spherulite clusters are
released, and second the spherulite clusters are degraded
as well. Figure 9 visualises the concept. The second stage
means that in experiments we will not see a well-defined
final degradation level, but that the values continue to
change slowly. This can be seen below, in figure 12.

C. Spherulite parameters

Figure 10 shows the experimental curves of grow-
ing crystallinity in PET particles obtained from bot-
tles and textiles. The initial particle radius is around
Rpo = 80pum. A fit with an Avrami function needs three
parameters,

47 3
X(t) = A[1 - exp(—?(B +Ct) )] (10)
with the optimal values?

fit of function (10):| A B C
PET textile, 75°C|0.37 0.49 1.5x107'/h
PET textile, 65°C|0.37 0.49% 2.5x1073/h
PET bottle, 75°C|0.27 0.47 7.2x107'/h
PET bottle, 68°C|[0.27¢ 0.47¢ 1.5x1072/h
PET bottle, 65°C|0.27+ 0.47% 3.5x1073 /h.

¥ Values marked with a symbol () are imposed instead of resulting
from a parameter fit.



In the data time-series, the final level of crystallinity is
visible only for the highest temperature, namely 75°C;
the parameter A is then part of the fitting procedure.
For lower temperatures, the final level is not included
in the data, but we assume that it does not depend on
the processing temperature, only on preparation, there-
fore we impose it in the fitting procedure. The same
applies to the parameter B, which reflects the initial size
of spherulites. In table (11) and in the following tables,
imposed values are marked with a symbol (¥).

In order to obtain the model parameters from these
fits, we further need a value for N.. Jabarin’s publica-
tion [49] about the haze in dried PET sheets without ini-
tial crystallinity gives a distance between nucleation sites
of roughly 4pm, for temperatures of 115°C to 130°C, see
Fig. 6 there. Lacking more precise information, we use
this value for N/ for the PET particles.

The correspondence to model parameters is B =
(NDY3Ry, C = (N)Y/3R,, and A translates into Vi
with a suitable factor which will not be used. Together

with the fit values of table (11) we now obtain the fol-
lowing model parameters for spherulites:

(NDY® Ry R,
PET textile, 75°C|0.31/(pum)* 1.6pym  4.9x10~!um/h
PET textile, 65°C|0.31/(pum)* 1.6pum* 7.9x1073um/h
PET bottle, 75°C|0.31/(ym)* 1.5um 2.3x10~'um/h
(pm)
(pm)

PET bottle, 68°C[0.31/(ym)* 1.5um* 4.8x10~2um/h
PET bottle, 65°C[0.31/(ym)* 1.5um* 1.1x10~2ym/h.
(12)

D. Depolymerisation hindered by spherulites

The experimental depolymerisation yield from
PET particles is shown in figure 11, from the same ma-
terials and at the same temperatures as figure 10. The
depolymerisation was done using the enzyme hydrolase
LCC-ICCG [1, 22]. The model’s parameter R, account-
ing for depolymerisation is encoded in the initial slope
of the curves in figure 11. If the initial crystallinity is
negligible, then the initial slope of the depolymerisation
curves is simply given by the parameter combination
Ry, /Rpo, see figure 4 for an example.

If, however, a considerable part of the amorphous—
solute interface is covered by spherulites, they block the
enzymes’ access to amorphous material. Only a frac-
tion exp(—%ﬁN LR%,) of the shrinking sphere’s surface is
exposed to enzymes, and the degradation is reduced by
the same factor. The factor has the same exponential
form as seen in equation (8), which is characteristic of
an Avrami argument. Indeed, it has the same origin,
only that here we do not have spheres overlapping in
space, but circles overlapping on the particle’s surface.
The value of the factor can be calculated from the values
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Figure 11. Symbols: Experimental data from depolymerisa-
tion of PET particles, in buffer [22]. Fits of function (13) to
the initial part of the curves result in the optimal parameters
given in table (14). Their initial slopes, as given in table (15)
are visualised by the black lines.

given in table (12), and the initial slope of the curves can
be obtained from figure 11. To obtain these slopes, we
first fit a smooth function locally to the data at short
times, namely the following cubic function,

D[1 —(1- Et)?’] (13)

The fit yields the optimal parameters D and F,

fit of function (13):| D E 3DE
PET textile, 75°C|0.31 0.34/h 0.31/h
PET textile, 65°C|0.64 0.096/h 0.18/h
PET bottle, 75°C|0.42 0.29/h 0.36/h
PET bottle, 68°C|0.68 0.1/h 0.21/h
PET bottle, 65°C|0.86 0.067/h 0.17/h

The slope at time zero is then given by 3DE, which
equals (—3Rj/Rpo) exp(—3FN/R3)) in terms of the
model parameters. The fitting procedure was carried out
individually for every experimental curve. However, the
enzyme activity is expected to depend only on the tem-
perature, and not on the material or the preparation. In-
deed, the fitting nicely groups the initial slopes by their
processing temperature. We can thus average for each
temperature,

average initial slope:‘ (3DE)
75°C|0.34/h
68°C|0.21/h
65°C|0.18/h.

(15)

Together with the radius Ry of the particles, which we
take to be 80um, we obtain the model parameters for



depolymerisation,

Rpo Ry,

PET textile, 75°C
PET textile, 65°C
PET bottle, 75°C
PET bottle, 68°C
PET bottle, 65°C

80pm* —13.7um/h
80pum* —8.1ym/h
80pm* —15.0um/h
80pm* —8.7um/h
80pm* —7.2um/h.

(16)

V. RESULTS AND DISCUSSION

In the above section we learned how to get the
model parameters for depolymerisation and for spherulite
growth from experimental data. With the values in ta-
ble (16) we obtained the parameters Ryg, Rj charac-
terising degradation, and with the values in table (12)
those characterising spherulites, N., R, R,. Now we
can use both sets of parameters in our model to make
a numerical prediction for combined degradation and
spherulite growth. Figure 12 shows this prediction for
the depolymerisation of PET particles from the two dif-
ferent sources of waste and different temperatures and
compares it with the experimental data.

For PET from textile waste, the model fits the ex-
perimental data very nicely, see the upper panel of fig-
ure 12. Both the final yield and the timescale are pre-
dicted by the model, at both temperatures. The match
between model and data is a real success of the model
and of all its underlying assumptions. We reiterate here
that the Avrami model describes overlap of spheres with
well-defined sharp boundary, which works for spherulites
in textile PET waste, and that in the model the final
level of depolymerisation is only indirectly given by the
final level of crystallisation. Also here the assumption
of sharply bounded spherulites enters. This final level
has been accessible from experiments only for 75°C, see
figure 10. At 65°C we had to deduce it from the 75°C
data. And finally, the rate of depolymerisation has been
estimated from the very first part of the depolymerisation
data only. Altogether, the spectacular matching of model
prediction and experimental data in the upper figure 12
corroborates the chain of arguments and approximations
we used in the course of sections II and IV.

The model slightly underestimates the depolymerisa-
tion of PET textile for times later than eight hours. Es-
pecially the data at 65°C seem to increase slowly again
after having levelled before. We attribute this slow in-
crease to the second-stage depolymerisation described in
section IV B.

For PET from bottle waste, the comparison of model
and experiment is shown in the lower panel of figure 12.
Here, the model matches experimental data up to five
hours of depolymerisation. After that, there are substan-
tial deviations. We think that they have two reasons, first

11

¢ PET textile, 75°C A
—— PET textile, 75°C

PET textile, 65°C
—— PET textile, 65°C

o) 1 T T T T T T T T — 1
g L
>
'S 0.81- —0.8
= L
< =
£0.6fF i t 0.6%
(] —
E T { =
204 045
O B n ot
g < S S S B B g
g 0.2+ —0.2
3
g Ot i
e . ] . ] . ] . ] o

0 2.5 5 10

time/h
PET bottle, 75°C  —— PET bottle, 68°C
PET bottle, 75°C e PET bottle, 65°C

x  PET bottle, 68°C —— PET bottle, 65°C
- 1 T T T T T T T T — 1
L L
- ¢
.g 0.8 =0.8
= L
< i <
£0.6fF s 20.6%
o .
g8 =
0.4 045
204 1"e
[ L &+
o
202}k Ho.2
= 4
g b
£ 0 . ] . ] . ] . ] o

0 2.5 5 10

time/h

Figure 12. Comparison of the numeric model (curves) with
experimental depolymerisation data (symbols). The symbols
refer to the left axis, while the curves refer to the right axis.
Model parameters are given in tables (12) and (16).

that the growing spherulites do not have a well-defined
boundary and the model idea of overlapping spheres is
thus too simplistic. Second, that these spherulites have a
highly amorphous content, and the second-stage depoly-
merisation sets in early and is quite pronounced. We re-
mind the reader of figure 10 where the highest observed
crystallinity degree in PET bottles is only around 27%.

We like to draw the reader’s attention to an interest-
ing feature of figure 12: The degradation curves at high
temperature start at a steeper initial slope than those
at low temperature, one would expect also a higher ter-
minal yield. The observed terminal yields, however, are
actually lower—the curves reverse their order. The ex-
planation for this is the spherulite growth, which reduces
the effective degradation, and which is more effective at
higher temperatures. The results in figure 12 show that
this effect is strong enough to revert the first intuition
from initial degradation slopes. It is thus useful to show
the degradation and the growth curves together, in the
same fashion as we did already in figure 6. This is done
in figure 13.

The two timescales 7y, 7, defined in equations (9), (7),
provide a useful estimate to describe the curves in fig-
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Figure 13. Numerical solution of the model, applied to
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PET particles: combined dynamics of amorphous degrada-
tion and spherulite growth. Model parameters are given in
tables (12) and (16). The degradation curves are the same as
in figure 12.

ure 13. From tables (12) and (16) we obtain the following
values,

Ts Th
1.9h 5.8h
120h  9.9h
4.6h 5.3h
23h  9.2h
95h 11.1h.

PET textile, 75°C
PET textile, 65°C
PET bottle, 75°C
PET bottle, 68°C
PET bottle, 65°C

(17)

When 75 > 73, then spherulite growth is sufficiently slow
that nearly all initially amorphous material will be de-
graded. The curves at 65°C in figure 13 are this case.
At 75°C there is no clear separation of timescales, and
degradation and growth both contribute to the final out-
come. This has been clearly visible in figure 6, and we
show it again in figure 13 for the parameters from the
PET degradation experiments.

A. Varying the initial crystallinity

In this section we vary the parameters of tables (12)
and (16) to make predictions for the depolymerisation
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Figure 14. The effect of initial morphology and of initial
spherulite volume: Numerical solution of the model, applied
to PET particles from textiles, treated at 75°C. Shown are
three chosen quantifiers for the yield of monomers, as a func-
tion of two parameters Rso and N.. All other parameters
are constant as given in tables (12) and (16). R and N,
are related to the initial filling by spherulites Vipn(0)/Viot via
equation (8).

yield. We vary those parameters for which we did not do
experiments. It is common practice to characterise the
output of enzymatic degradation by key quantifiers, such
as the yield of monomers after a fixed amount of time, or
the initial yield rate [50]. These quantifiers are simpler
than the full degradation curve. Figure 14 shows predic-
tions from the numerical model for three such quantifiers:



for the amount of degraded monomers after five hours
(top panel), for the initial slope of the degradation curve
(middle panel), and for how long the degradation process
takes (bottom panel). For the latter convergence time we
take the time when the growth and degradation curves,
such as shown in figure 13, approach each other closer
than 5% for the first time. We base the model param-
eters for figure 14 on those for PET textile at 75°C, as
given in tables (12) and (16) and then vary both N/ and
Rsp, independently. These two parameters determine the
initial filling by spherulites Vipn(0)/Vios by equation (8).

In the top panel of figure 14 we find again the same
message as in figure 6: Many small spherulites lead to
lower degradation yield than few big spherulites. No-
tice that for a given Vipn(0)/Viot, increasing Ry means
decreasing N/, and vice-versa. In the bottom panel of
figure 14 we see that many small spherulites reach the fi-
nal levels earlier than few big spherulites. We found the
same message from the conceptual parameters in figure 6.

The middle panel of figure 14 quantifies the initial
rate of degradation as a function of the parameters N
and Rsy. The spread of these values is much less than in
the top panel of the figure. Moreover, the order of the
curves is inverted, that is more and smaller spherulites
lead to a smaller initial slope, despite an increased yield
after five hours. The same inversion is visible in figure 12.
For the materials we used, the initial rate of degradation
is thus no indicator for the final yield of degradation.

B. Varying the particle size

Figure 15 shows again the three quantifiers, now vary-
ing the particle size Rpo. This is an important parameter
for practical application, because it reflects how finely
the plastic waste has been milled. In the top panel of
figure 15 we see a crossover of yield from volume-like to
surface-like scaling. In larger particles, the spherulites
deep inside the particle have more time to grow, and if
the particle is large enough, they make contact and form
a compact object resisting degradation. In the extreme
case only an outer layer of the particle is degraded, which
we see as the quadratic scaling ocR% in the figure. In
smaller particles the spherulites have not enough time
to fill space densely, and the amorphous matrix between
them is (partly) degraded. We then see a volume-like
scaling R} ..

The bottom panel of figure 15 depicts how long the
degradation process takes, defined as the time when the
degradation and the growth curves approach each other
closer than 5% for the first time. For large particles,
this time seems to converge towards a constant value,
around 2.3h. This is in accordance with the idea that
only an outer layer of the particle is degraded, leaving a
compact object of spherulites. The thickness of the layer
is then around 32um, which explains why at the left side
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Figure 15. The effect of particle size: Numerical solution of
the model, applied to PET particles from textiles, treated
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of the plot the data cross over to linear scaling, in which
the particle is (partly) degraded down to its center.

Instead of showing the absolute degraded volume, it
might be more interesting to see what percentage of a
given material one might obtain, depending on how finely
it is milled. In principle, this information is read off the
top panel of figure 15, when comparing the data points
with the line o« R} . Figure 16 shows this information
more conveniently, by rescaling the evolving volumes by
the total initial volume of the particle. The data points
in figure 15 were obtained from the curves in figure 16.
Clearly, small particles are degraded more quickly, and
to a higher fraction.

VI. SUMMARY

Plastic particles from waste sources are usually het-
erogeneous, comprising an amorphous matrix which is
degradable by enzymes, and recalcitrant spherulites em-
bedded in the matrix. Because of the thermal treatment
before exposing the particles to enzymes, the heterogene-
ity evolves in time. We present a model for these com-
bined dynamics, which accounts for both the degradation
of the amorphous matrix and the growth of embedded
spherulites.

The core of the model is that we treat the degrad-
ing particle and the spherulites as spheres whose radii
change in time. We thereby convert the combined
growth/degradation problem into a geometrical problem.
The spherulites can overlap, and they can stick out of
the degrading particle. In the latter case the spherulites
block enzymes from accessing the amorphous matrix and
thus influence the rate at which amorphous material is
degraded. The overlap of spherulites places our model in
the class of Avrami models. Here, the spherulite growth
is further limited by the shrinking amorphous particle.
There is thus a mutual influence of spherulite growth
and degradation of amorphous matrix.

We thus cannot use the simple exponential Avrami
function (8) to describe the spherulite volume as a func-
tion of time. The finite size of the degrading particle
breaks the assumptions underlying the derivation and the
validity of the simple exponential Avrami function. In-
stead of trying to derive an alternative Avrami function,
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we solve the model equations (1)—(5) which operate on
an explicit finite set of spherulites at given positions.

In section III we present a new numerical algorithm to
solve the model equations and to calculate all required
geometrical quantities. The core of the algorithm is to ex-
tend a Voronoi tessellation to a double tessellation, which
covers the degrading particle twice.

In section IV we show how to obtain the model pa-
rameters from experimental data. This is done for two
different materials, each degraded at different temper-
atures. We find that the mapping between model and
experiment works very well for particles obtained from
PET textile waste, and it works to an acceptable degree
for those taken from PET bottle waste.

In section V we use the model to make predictions
for the result of degradation for parameters that we did
not vary in the experiments. In particular, the ini-
tial crystallinity (more precisely the volume fraction of
spherulites) has an important influence on the final yield
of monomers obtained.

We further use our model to render evident that the
initial crystallinity and volume fraction of spherulites is
quite an ambiguous quantity and in general does not al-
low to predict the outcome of degradation processes. The
same overall volume can be split into many small or few
big spherulites, and their number impacts their distances
from each other, and thus together with their growth rate
also the time when they will form a compact recalcitrant
object. We elucidate this idea first on conceptual pa-
rameters in figure 6 and then again in figure 14 with the
parameters taken from experiments.

From the numerical solution of the model we extract
selected quantifiers, namely the obtained yield after some
given time (e.g. five hours), the initial rate of yield, and
the time when the process finishes. We find that the
initial rate of degradation is actually no indicator for the
final yield of degradation as it depends on both the size
of the particle and on the size and volume fraction of the
internal spherulites.

We further use our model to make a prediction for
the influence of the particle size on the yield. We find
two regimes, in the first small particles are degraded to
their center, and in the second large particles have only
an outer shell degraded. We can quantify the crossover
between these two regimes, as well as the thickness of the
outer layer.
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