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1. Introduction

For theoretical and mathematical physics, the description of fluid flow has always been
an important source of inspiration. Going back to the times of Maxwell, it has led to the
field concept and thus made the description of electromagnetism possible. Then, in the
twentieth century, the nonlinearity of the Navier–Stokes equation has given physicists
and mathematicians a very hard time – which lasts until today. Still, a “mathematical
theory which will unlock the secrets hidden in the Navier–Stokes equations”1 is one of
the famous Millennium Problems. During the past decades, complex fluids such as non-
Newtonian polymer solutions have gained more and more interest, but this is by far not
the last topic that the Navier–Stokes equation has inspired.

In recent years, microfluidic setups have fascinated many scientists (Squires and Quake,
2005; Stone and Kim, 2001; Stone et al., 2004). Microfluidics opens a door towards
the physical and mathematical treatment of biological systems, ranging from details of
polymer dynamics in flows (Schlagberger and Netz, 2005; Doi and Edwards, 1986) over
the mechanics and flow in thin blood vessels and cells (Sackmann, 2004) up to creatures
living and walking on water surfaces (Hu et al., 2003; Bush and Hu, 2006), to name only
a few. Its potential use for miniaturising standard chemistry setups seems tremendous
(see Stone and Kim 2001 and references therein). Using and understanding microfluidic
systems in practice, however, often implies a change of paradigm. On typical length
scales up to 100µm, water does not behave as we are used to from everyday life. It
appears to be viscous like honey, its interface with the surrounding air is stiff and hard
such that one could walk on it like water a strider. And, last but not least, all movement
is subject to fluctuations, leading to well-known phenomena such as Brownian motion.

A promising new technique for manipulating small amounts of water and other liquids
has been developed recently by Wixforth et al. (2004). They actuate droplets of water
with so-called surface-acoustic waves (SAWs) which are waves of mechanical elonga-
tion at the surface of a crystalline material, illustratively understood as a tiny earthquake.
When such a wave comes into contact with water, it gets damped and gives rise to a
streaming in the fluid. The photographs in Figures 1.1 and 1.2 give an immediate im-
pression of the resulting flows. The driving force, which is caused by the SAW, gives
rise to an internal streaming pattern, as is made visible in Figure 1.1. A strong SAW may
deform and move the droplet as a whole, as is depicted in Figure 1.2.

1see e.g. http://www.claymath.org/millennium/Navier-Stokes_Equations/
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1. Introduction

a b c d

Figure 1.1. A resting water droplet, which is mixed by a weak SAW. The snapshots are taken at consec-
utive times from (a) to (d). The SAW approaches the droplet from the left and is damped by the influence
of the viscous fluid. This gives rise to the internal streaming pattern. A spot of colour dye on the substrate
is slowly dissolved and makes the flow visible. (Pictures from C. Strobl and A. Wixforth)

a b c

d e f

Figure 1.2. A “jumping” droplet containing 50nl of water, on a flat substrate. The photographs are taken
at consecutive times from a film. Thus, several snapshots overlap in each picture. In the middle pictures
(b) and (e), a powerful pulsed SAW arrives from the left and deforms it strongly. When the SAW is turned
off, the droplet relaxes into its initial spherical shape at a slightly shifted position. (Pictures from C. Strobl
and A. Wixforth, see also Wixforth et al. 2004)

This new manipulation method opens a wide range of applications and fundamental
problems. Several lab-on-a-chip applications become realisable, such as the ability to
transport, mix and separate droplets of some nanoliters volume, as well as the replica-
tion of DNA in small droplets, and more (see Guttenberg et al. 2004; Rathgeber et al.
2005; Sritharan et al. 2006; Strobl et al. 2004; Guttenberg et al. 2005; and http://www.
.advalytix.com). The experimental setup is accessible from many sides, which is con-
venient regarding both the injection of particles into the fluid and the observation of their
motion. From a theoretical side, SAW-driven microflows imply several aspects raising
fundamental questions, some of which remain unsolved already for several decades. The
jumping motion of the droplet, as in Figure 1.2, might allow a closer look on the prob-
lem of a moving contact-line. What boundary condition is imposed on the flow at the
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substrate in the vicinity of the contact line? Does the droplet in Figure 1.2 glide, roll
or rather jump – or is it a combination of all three motions? The driving mechanism by
the SAW itself is not fully understood either. It is currently under investigation by the
experimental physics group of A. Wixforth and the mathematics group of K. Siebert, see
Gantner et al. (2006) for recent achievements. Another fundamental question concerns
the thermodynamics of a fluid in motion, for which an equilibrium description is not ap-
plicable anymore. Such a fluid comprises fluctuating velocities and forces. Describing
their statistical properties in the presence of boundaries, such as rigid immersed particles,
is a demanding challenge. Altogether, the present thesis will have to describe and to
combine several interesting and important aspects of the microflows.

The focus of the thesis is on the description of stationary SAW-driven microflows with
free surfaces and the motion of particles therein. Different geometries of the fluid will
be considered, such as droplets and water channels, confined partly by the flat substrate
at the bottom, partly by free surfaces. For the actuation mechanism we will assume a
qualitative characterisation of the acoustic streaming effect by the SAW. The very details
of the SAW will not be treated here. The typical length scales of the systems is between
ten an hundred micrometers. In such small systems, the boundaries tend to dominate the
behaviour of the flow. Above all, we will confront ourselves with free surfaces, which
introduce a nonlinearity and thus are considerably more difficult to treat than ordinary
boundary conditions for viscous flow.

For the extensive specification of the flows in the mentioned geometries, in Chapter 2 we
will derive a numerical algorithm which is capable of calculating the shape of a curved
free surface together with the surrounding flow causing the deformation. A key element
of our analysis is the variational formulation of the equations describing both the flow
and the geometry of the curved free surface. This formulation allows the derivation of
an algorithm which is more stable than previously existing ones, due to the fact that
the discrete representation of the free surface adapts some properties of a rubber band.
A highlight of Chapter 2 will be the numerical solution of the flow inside a small droplet.
The qualitative properties of its deformation yield an improved insight into the nature of
the driving forces by the SAW.

In Chapter 3 we will use the numerically obtained free-surface flows to investigate their
potential application concerning particle accumulation. The benefit of the free-surface
numerics here is twofold. On one hand, the calculated velocity fields are utilised for
the combined advective and diffusive transport of small particles. Here, we will focus
on the effects by the boundaries on the accumulation of particles. On the other hand,
what we have learned about the SAW from the droplet deformations, will prove useful
to understand an accumulation effect in the volume. This effect is based on the different
impacts of the velocity and the pressure fields on differently sized particles.

In the following sections of this chapter we will introduce those aspects of the SAW-
driven microflows which are of most interest here. We start with the description of the
flow, governed by free surfaces, and then qualitatively characterise the driving mechan-
ism by the SAW. The third section of this chapter motivates a closer look on the ability of
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1. Introduction

such microflows to generate directed transport of particles. The following two chapters
then contain the detailed treatments of the free surface and of the particle transport.

1.1. The flow in microfluidic setups

Throughout this thesis, we will use tensor notation for fields in arbitrary curvilinear co-
ordinates. This considerably simplifies the differential-geometric notation in Chapter 2,
where the flow around curved free surfaces is described. For the formulation of the
Navier–Stokes equations in curvilinear coordinates we refer to Aris (1989). Indices that
are preceded by a comma denote covariant derivatives, and a repeated index that occurs
both in co- and contravariant position is summed over. The metric tensor of the underly-
ing coordinate system in space is denoted by gij .

1.1.1. The Stokes equations

The equation that describes a general flow of an incompressible fluid is known as the
Navier–Stokes equation. It is a nonlinear equation in the velocity components, reading

ρ∂tv
i + ρvjvi

,j = σij
,j + f i , (1.1)

where vi is the velocity field of the flow and ρ the mass density of the fluid. The stress
that a fluid element experiences from its surroundings is given by the stress tensor σij ,
and f i is an externally applied body force that drives the flow. The stress tensor may be
split into the isotropic contribution of the local-equilibrium pressure p and into a viscous
part, containing the symmetrised derivatives of the velocity field,

σij = −pgij + 2ηeij with (1.2)

eij =
1

2
(vi,j + vj,i) . (1.3)

The tensor eij is called the rate-of-strain tensor, and η denotes the viscosity. The con-
dition for the fluid being incompressible is that the velocity is a solenoidal vector field,
i.e. with zero divergence,

vi
,i = 0 . (1.4)

In microfluidics, the nonlinear term in the Navier–Stokes equation is often much smaller
than the viscous term and can therefore be neglected. The validity of this approximation
is better when the ratio of inertial forces and viscous forces, which is called the Reynolds
number

Re :=
ρv̄x̄

η
, (1.5)

is smaller. Here, v̄ and x̄ denote the typical scales of the velocity and of the length on
which the velocity changes. Both are small in microfluidics. The length scale of velocity
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1.1. The flow in microfluidic setups

changes is smaller than the system size, between 10µm and 100µm. The typical velocity
of the SAW-driven flow is found in the experiments to be between 10µm/s and 1mm/s.
This leads to Reynolds numbers between Re = 10−4 and Re = 0.1. We will therefore
omit the nonlinear term of the Navier–Stokes equation. Furthermore, the flow of water
on the given length- and velocity scales is found to be overdamped. When the driving
force f i is switched off, then the flow ceases nearly immediately (Purcell, 1977). Below,
the focus of the thesis will thus be reduced to stationary flows with vanishing Reynolds
number, which are described by the stationary Stokes equation

0 = −p,i + ηvi,jkg
jk + fi . (1.6)

We will refer to both equations, (1.4) together with (1.6) as the Stokes equations. The
solutions of the Stokes equations exhibit several remarkable properties. One of them is
that the flow is laminar and reversible. The streamlines of a laminar flow are locally
straight and parallel. The global streamline pattern, however, may be complicated. Ma-
terial lines of the fluid, when evolved together with the flow, may fold into even more
complicated structures. If the sign of the flow is reversed, however, the complicated ma-
terial lines will be restored to their initial shape. The overdamped behaviour of water on
small length scales and the linearity of the Stokes equations have grave implications on
small living organisms trying to propel themselves through the fluid. How life at small
Reynolds numbers looks like, for example to bacteria, can be found in the illustrative
survey of Purcell (1977, 1997).

Another property of the Stokes equations is that they may conveniently be split into
independent equations for the pressure and for the velocity. In order to explain this
concept, we make use of the Helmholtz–Hodge decomposition for vector fields and split
the body force f i into a conservative part, i.e. the gradient of a potential Φ, plus a non-
conservative rest, i. e. the rotation of a vector potential, (cf. Abraham et al., 1988),

fi = f (c)
i + f (nc)

i with f (c)
i = −Φ,i . (1.7)

The velocity field, which is solenoidal, yields only the rotatory part when it is decom-
posed in the same way. Accordingly, the Stokes equation is split into a gradient part and
a rotatory part,

0 = −p,i − Φ,i and (1.8 a)

0 = η∆vi + f (nc)
i . (1.8 b)

The conservative part f (c)
i =−Φ,i and the non-conservative part f (nc)

i of the driving force
are thus seen to cause very different effects. The first gives rise to a pressure field, while
the latter drives the velocity field. Note that the decomposition (1.7) is not unique. Gen-
erally, if the force contains a so-called harmonic part which is both divergence-free and
rotation-free, then it depends on the boundary conditions whether the force causes a pres-
sure, a flow, or both. For example, a homogeneous gravitational force cannot drive any
flow in a confined vessel, it is entirely compensated by the pressure gradient. In an un-
bounded domain, such as in a periodically continued fluid channel or in a thin film on an
inclined surface, gravitation may cause a flow.
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1. Introduction

The fluid domain V may be bounded by rigid walls and by free surfaces. The Stokes
equations (1.4) and (1.6) are complemented by boundary conditions at the different parts
of the boundary ∂V . Both types of boundaries, rigid and free, coincide with material
lines of the flow, consisting always of the very same fluid elements, which are stretched
and contracted during their temporal evolution. In the direction normal to the boundary,
the velocity field is then given by the velocity of the surface. This is the kinematic
boundary condition, reading for an immobile surface,

N ivi = 0 , (1.9)

where N i denotes the normal vector.

At sticky walls, also the velocity tangential to the surface is given by the velocity of the
surface itself. This boundary condition is called no-slip condition. For immobile walls,
it reads

T i
(α)vi = 0 , (1.10)

where the vector T(α) is the αth tangential vector to the surface.

1.1.2. Flows with free surfaces

The shape of a free surfaces, which occurs in the microfluidic setups as well as in every-
day life, is determined by a force balance. On one side, there is the stress which is exerted
by a viscous fluid at its surface, reading −σijN

j for a normal vector pointing out of the
fluid. The surrounding air is assumed to have vanishing viscosity compared to the fluid,
thus providing the stress −p0Ni only via the constant ambient pressure. Any difference
between these two stresses must be caused by the surface tension γ of the free surface,
yielding the stress balance

σijN
j + p0Ni = γκNi + γ,αT

(α)
i . (1.11)

In the first term on the right-hand side, κ denotes the curvature of the free surface. This
term accounts for the surface tension. The last term contains γ,α, which is the gradient of
the surface tension along the surface. This term is responsible for so-called Marangoni
instabilities, where temperature gradients deform a free surface and thus give rise to a
flow. A detailed interpretation of all terms in the stress balance (1.11) are given below,
in Section 2.2. The free surface may meet the walls in a contact line. There, additional
requirements are to be met, such as a prescribed contact angle, or the position of the
contact line. In the latter case, the contact line is pinned.

The description of free-surface flows differs in one important aspect from flows in con-
fined channels and from unbounded flows. Usually, differential equations like the Navier–
Stokes equations are to be solved in a prescribed volume. For free-surface flows, the
determination of this volume is part of the problem. We have to solve an equation in
a volume that depends on the solution of the equation. Of course, the equations in the
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1.1. The flow in microfluidic setups

volume, together with the boundary conditions can be reformulated in non-Cartesian
reference coordinates, such that they are to be solved in a given set of these new co-
ordinates. The complication of this method is that these coordinates are unknown and
themselves part of the problem. Since in general the free surface is curved, the coordin-
ates are non-Cartesian, curvilinear coordinates. This makes both the Stokes equations
and the boundary conditions strongly nonlinear in the coordinates, as can already be
seen in the formulation of the Stokes equations (1.4) and (1.6). The metric tensor gij ,
which is simply the Kronecker symbol δij when using Cartesian coordinates, depends
quadratically on the derivatives of the old coordinates with respect to the new ones. The
inverse tensor gij depends on the new coordinates in an even more complicated way. For
reference see Aris (1989) or Section 2.2.1 below, where the same nonlinearity will be
explicated for the metric tensor of the free surface.

For this reason, free-surface flows require advanced numerical methods. While the nu-
merical treatment of viscous flow, bounded by rigid walls with an inflow region, and an
outflow region, is a standard task which can be done with the help of commercially avail-
able software, it is more complicated with free-surface flows. The task of finding a stable
numerical technique for free-surface flows can be summarised as the formulation of an
algorithm which reduces the nonlinear occurrence of curvilinear coordinates as much as
possible. However, these nonlinearities can never be avoided completely.

1.1.3. The microfluidic parameter regime of surface
deformations

In the balance condition (1.11) for the stress at the surface, there are two independent
sources of deformation, one is the pressure, the other is viscous stress. Their import-
ance compared to the tension forces is measured by the capillary number and the Bond
number,

Ca :=
ηv̄

γ
, (1.12)

Bo :=
f̄ (c)x̄2

γ
. (1.13)

The latter is defined in a slightly more general way than usual, not only for a homogen-
eous conservative gravitation force but for arbitrary conservative forces. In a confined
system with stationary boundaries and vanishing Reynolds number, we can make use of
the rotatory part of Stokes’ equation (1.8 b). The typical velocity scale is then expressed
in terms of the non-conservative part of the driving force, namely v̄= x̄2f̄ (nc)/η. This al-
lows an alternative definition of the capillary number similar to that of the Bond number,

Ca :=
f̄ (nc)x̄2

γ
. (1.14)
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1. Introduction

The two dimensionless numbers Ca and Bo reflect the very different effects of the con-
servative and the non-conservative parts of the driving on the deformation of the free
surface, respectively.

A third source of deformation is the gradient of the surface tension along the free surface.
Except when dealing with the variational derivation of the free-surface stress-balance we
will neglect these terms, assuming that the surface tension is a constant parameter. The
surface tension is known to depend on the local temperature, but neither on the pressure
nor on the velocity. We will not consider the temperature field in our calculations.

1.1.4. Limit of infinite surface tension

The free-surface flow problem comprises to sub-problems which cannot be solved inde-
pendently. On one hand, the free-surface shape is to be determined, such that the flow
can be calculated in the domain bounded by that shape. On the other hand, the surface
is deformed by the flow. In the limit of an infinite homogeneous surface tension, how-
ever, these two sub-problems decouple. In this limit, the flow cannot deform the free
surface any more. Already for a very large tension, or for an adequate external body
force, both Ca and Bo are negligible. The stress balance at the free surface then reduces
to the Laplace–Young condition with a constant pressure p,

− p+ p0 = γκ . (1.15)

The free surface thus has the same curvature κ everywhere. The combined problem of
finding a stationary flow and the stationary position of the free surface now decomposes
into two parts. First, the position and shape of the surface can be determined according
to (1.15) together with the position of the contact line or the contact angles. The free
surface is found to be a circle in two spatial dimensions. In three dimensions, a surface
with constant curvature may be a sphere, but its shape generally depends on the shape
of the contact line as well. After the surface has been determined, the flow field can be
calculated.

To summarise the procedure here for later use also with smaller surface tension, the
equation which determines the surface shape is the projection of the stress balance onto
the normal direction. The remaining boundary conditions, the kinematic one together
with the tangential projections of (1.11) are used for the flow field. These boundary
conditions can also be regarded as perfect-slip boundary conditions, describing fluids
which glide over a rigid wall without friction,

viNi = 0 , (1.16 a)

T i (vi,j + vj,i)N
j = 0 . (1.16 b)

The tangential components of the normal stress must vanish, while the component in
normal direction, reading N iσijN

j , is compensated by the wall to an arbitrary extent
and does not appear in the boundary condition.

8



1.2. Acoustic streaming

(a) (b) (c)

Figure 1.3. Two coloured fluid jets are caused by an inter-digital transducer at the bottom of a well
which is covered by colour dye. The fluid is contained in a cuvette of the dimensions 54mm×10mm×
23mm. The part shown in the pictures is approximately 18mm wide. Between the snapshots, time spans
of 0.16s and 0.48s have elapsed. The long and thin form of the coloured fluid fingers together with their
growth direction strongly indicates that the direction in which the SAW forces the fluid coincides with
the orientation of the fingers. The length scale on which the SAW-force decays appears to be several
millimetres, which is long compared with the wavelength of the SAW. (Pictures from Z. Guttenberg and
A. Wixforth.)

In Section 2.3.1 we will return to the question whether it is possible to determine a free-
surface flow in two separate steps, namely finding the correct shape of the free surface
and calculating the corresponding flow. There, the assignment of boundary conditions
to the two sub-problems will pose the central issue of the numerical implementation. In
order to show that there is not much hope to obtain free-surface flow fields analytically,
Appendix A presents the analytical solution for the simple geometry of an infinitely long
half cylinder. In this example, the fluid is bounded partly by a no-slip substrate, partly
by a free surface in the limit of infinite surface tension.

1.2. Acoustic streaming

The considered microflows are driven by surface-acoustic waves (SAW). These are Rayleigh
waves of a mechanical elongation at the surface of a crystalline material. The SAWs are
emitted by so-called inter-digital transducers, which are structures of many interlaced
parallel electrodes on a piezoelectric substrate. When an oscillatory voltage is applied
to them, the inverse piezoelectric effect generates an initial deformation of the crystal
surface, which then propagates on the surface away from the transducer (Strobl, 2001).
As long as the SAW runs over the surface of the substrate, it is hardly damped. When
it rushes into a water droplet, however, it looses energy while giving rise to an internal
streaming pattern in the fluid. This mechanism is called acoustic streaming.

For a detailed description of the acoustic streaming effect, the works by Eckart (1948)
and by Nyborg (1965) serve as a starting point. The general framework of their theories
on acoustic streaming is the following. The effect takes place on two separate time scales.
On the short time scale, which is determined by the frequency of the SAW, the motion of
the interface between the substrate and the fluid is resolved. On this scale, water does not
perform an incompressible flow but has to be described by the equations of compressible
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1. Introduction

fluid dynamics which consider the mass-density of the fluid not as a constant but as
part of the problem. Compared to the stress tensor (1.2) in the previously formulated
Navier–Stokes equations, the stress then contains an additional term accounting for the
compressibility. The condition (1.4) is replaced by an equation for the conservation of
mass. A further equation of state relates density and pressure. The SAW, which is a
wave on the substrate surface only, causes a sound wave running from the substrate into
the fluid. This sound wave is subject to viscous damping along its path in the fluid.
Furthermore, the nonlinear terms in the compressible Navier–Stokes equation give rise
to higher harmonic pressure and velocity fields, oscillating at all multiples of the initial
frequency. The emerging time-independent contribution is the wanted streaming velocity
field which can be observed in the experiment.

There are typical time, length, and velocity scales in an SAW-driven system which are
imposed by the SAW directly. These are the wavelength of the SAW (23µm) and the
period of its temporal oscillations (7.5×10−9 s). Other scales are given by the material
constants, such as the sound velocities in the substrate (approx. 3.5×103 m/s) and in wa-
ter (1.5×103 m/s). Further scales follow from the reaction of the fluid on the SAW. They
can only be obtained a posteriori from experimental observations. To be mentioned are
the amplitude of the SAW (approx. 1nm), the damping length of the SAW under the fluid
(approx. four wavelengths), the damping length of the sound wave in the fluid (several
millimetres), and the typical velocity of the resulting stationary flow with magnitudes up
to approximately 1mm/s.

From the frequency and the amplitude of the SAW one obtains the maximal velocity of
the substrate surface as 0.5m/s. This velocity is at least three orders of magnitude larger
than the typical stationary velocity, and three orders of magnitude smaller than the sound
velocities of the materials. Thus, the velocity scales are clearly separated. The time
scales are found to be separated even better, if one considers the generated streaming
flow as truly stationary. The length scales, however, do not provide such a clear picture.
The wavelength of the SAW and the length on which the SAW is damped by the fluid
are both of the same order of magnitude as the system size. Only the amplitude of the
SAW is several orders of magnitude smaller, and the damping length of the sound wave
is much larger.

An important parameter for the theoretical description of the acoustic streaming effect is
the Reynolds number of the velocity on the short time scale. It can be estimated by the
above mentioned maximal velocity of the substrate surface together with the wavelength
of the SAW as the typical length scale. This yields a value of Re≈ 10 for the fast velo-
cities. The Reynolds number of the slow flow field can be estimated to be in the range
of 10−4 to 0.1, where a velocity between 10µm/s and 1mm/s together with a typical
length of 10µm to 100µm has been assumed, see also Section 1.1.1. The slow velocity
field on the large time scale is therefore assumed to be a solution of the Stokes equations
(1.4) and (1.6). The average flow performs an average motion just like an incompressible
fluid, driven by an external body force. This body force effectively describes the whole
driving mechanism of the SAW.
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1.2. Acoustic streaming

As candidates for a detailed explanation of the acoustic streaming effect in SAW-driven
setups, the theories by Eckart (1948) and Nyborg (1965) have been considered. Both
approaches have successfully been employed to describe acoustic streaming in other
systems. They treat the viscous damping and the nonlinearities in the Navier–Stokes
equation as small perturbations of an undamped acoustics. The undamped sound wave is
described by the terms ∂tv and∇∇∇p in the Navier–Stokes equation, together with the equa-
tion for mass conservation. The terms η∆v together with its compressible counterpart
account for the damping, and the nonlinearity is introduced by ρ(v ·∇∇∇)v. A dimen-
sion analysis with the typical scales in the system corroborate that both perturbations
are small, compared to the undamped acoustics. On top of this requirement, both Eck-
art (1948) and Nyborg (1965) treat the nonlinearity as a much smaller perturbation than
the viscous damping, which corresponds to a Reynolds number much smaller than unity,
Re� 1. In contrast, we found this Reynolds number of the compressible flow on the
short time scale to be Re≈ 10. Whether a more rigorous multi-scale analysis (according
to the outline by Bender and Orszag 1978) of the problem is possible, cannot be judged
here. A detailed numerical analysis of the problem is currently under consideration by
Siebert et al. (see also Gantner et al., 2006).

In the discussions of free-surface flows and particle transport in the following chapters,
we will require only a qualitative notion of the driving force by an SAW in order to
describe the actuation. Figure 1.3 reveals the main features of this force. The three pho-
tographs were taken successively, from (a) to (c). We see that the flow pattern transports
coloured dye in two finger-like structures from the bottom of the well into the volume.
Although we cannot directly see the force which is acting here, it is apparently localised
in two narrow channels. The width of the active region can be estimated from Figure 1.3
to be smaller than 0.3mm. Other experiments indicate that it is only about 70µm wide.
This width is mainly given by the damping length of the SAW under the fluid, but other
parameters, such as the global shape of the water domain, might also have some im-
pact. Its length is more difficult to estimate. Starting with picture 1.3b the colour fingers
develop a mushroom-like form, indicating that the driving force cannot prevent the im-
mediate back-flow of the fluid anymore. Thus, we are convinced that the driving force
has not lost a significant part of its initial strength up to situation (b) of Figure 1.3. The
length of the colour fingers in the respective photograph, namely 6mm, serves as an es-
timate for the decay length of the force which drives the flow. This is much larger than
the typical system size of a microfluidic system.

It will be discussed in Chapter 3 that there is a difference between the velocity of the
particles and that of the carrier media. In principle, it is not obvious that in Figure 1.3
we really see the flow of the water. Since the colour dye consists of particles which
are extremely small, however, there should be indeed no sensible difference between the
flow of the water and the flow of the colour dye.

For the chapters below, we thus arrive at the following qualitative picture of the driving
force caused by the SAW. It is localised in a narrow channel and drives the fluid parallel
to the main orientation of this channel. Its decay length in channel direction is at least
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1. Introduction

comparable to the system size. Finally, the angle of the driving force may not be specified
very well. As the pressure wave in the fluid may be reflected by the boundaries, this angle
may depend on the global shape of the boundaries present.

1.3. Transport of small particles

One reason for the investigation of microfluidic systems is the hope to use specially
designed flow patterns as a tool for particle transport. The ability to transport particles
in a specified way opens the possibility to concentrate them in a certain region of the
flow. A necessary prerequisite for such an accumulation is that the particle motion is
different from the motion of the fluid. The particle trajectories should not coincide with
the material lines of the flow. If the motion of a particle depends on a specific property of
the particle, such as its size, its chirality or its aspect ratio, then we may expect different
particles to react differently on a flow. Many applications are then possible. For example,
if a flow exhibits far separated regions which attract particles with different properties, it
is then possible to sort them. In case that there exists a narrow attractor for particles, it
induces a local increase of the particle density, leading to an accumulation effect. Several
mechanisms for such accumulation or separation techniques have been reported during
the last years (Omurtag et al., 1996; de Gennes, 1999; Strook et al., 2003; Gorre-Talini
et al., 1997; Marquet et al., 2002; Eichhorn et al., 2002; Eijkel and van den Berg, 2006;
Huang et al., 2004). These methods employ various means of driving the microfluidic
flows, some of which are miniaturised setups consisting of channels, pumps and valves,
while others employ driving mechanisms that are adapted to the microfluidic parameter
regime (Stone et al., 2004; Ajdari, 2000; Daniel et al., 2005; John et al., 2005).

In this thesis, we concentrate on an accumulation and separation method which is based
on the thermal fluctuation in the fluid, namely the drift ratchet by Kettner et al. (2000).
This system and possible modifications are introduced in the following paragraphs.

1.3.1. Particle transport in closed channels: the drift ratchet

An interesting fluidic device which is able to sort small spherical particles by their size is
the drift ratchet (Kettner et al., 2000). This setup consists of many parallel thin channels
in a silicon wafer. Such a channel is a few micrometers wide and is assumed to be
infinitely long. Its diameter varies periodically in an asymmetric way as depicted in
Figure 1.4a. An externally applied pressure gradient, which varies periodically in time,
pumps water back and forth through these pores. Small particles, such as micro-beads are
carried along by the flow, when they are immersed in the water. The particles and the fluid
perform a motion back and forth through approximately two unit cells of the channel. In
contrast to the average water flow which vanishes due to the periodic driving, Kettner
et al. (2000) find that the average displacement of the particles grows with time. One
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1.3. Transport of small particles

reason for this effect is the asymmetry of the channel under spatial inversion. The average
motion of a particle therefore depends on the orientation of the channel. Moreover, the
average velocity of a particle depends on its size, exhibiting even opposite directions for
differently sized particles. Thus, an efficient separation is achieved for specific pumping
parameters. The central property of the drift ratchet, namely that the asymmetry of the
pores causes a preferred drift direction of particles, has been verified experimentally for
0.32µm-beads (Matthias and Müller, 2003; Matthias, 2002).

The conclusion that under far-from-equilibrium conditions, periodicity in combination
with spatial asymmetry is generally sufficient for the manifestation of a systematic parti-
cle transport is well known as the ratchet effect. References on this and similar effects
can be found in the works by Reimann and Hänggi (2002); Reimann (2002); Astumian
and Hänggi (2002); Jülicher et al. (1997); Hänggi et al. (1990); Gammaitoni et al. (1998).
The mentioned requirements are all satisfied in the drift ratchet. Standard ratchets are
one-dimensional and employ an externally applied periodic potential as their driving.
The form of this potential, which in many cases is taken as a sawtooth, has been named
ratchet shape. The driving in the drift ratchet, however, is not due to a potential but due
to the water flow. The shape of the channel boundary has some similarity with a ratchet
shape. It has the same reflection asymmetry, but its influence on the particle transport
is much more complex than that of an asymmetric force. Kettner et al. (2000) explain
the ratchet effect as caused by the asymmetry of the shape of the channel in combination
with the far-from-equilibrium situation created by the periodically alternating pressure
gradient and thermal fluctuations. They propose an understanding of the particle current
as a combined effect, comprising first the thermal diffusion of a particle between stream-
lines of different speeds, similar to the Taylor dispersion (Taylor, 1953), and second the
collision of particles with the boundaries. For big particles, Kettner et al. (2000) suggest
that many collisions with the asymmetric channel boundary take place, leading to a pre-
ferred motion in the direction in which the pore looks like a series of funnels (this is the
direction from left to right in Figure 1.4a). For small particles, which tend into the oppos-
ite direction, the interplay of thermal and deterministic effects seems too complicated to
allow an intuitive explanation.

A striking aspect of the drift ratchet and similar setups is that their sorting mechanism
is based on the thermal fluctuations. An ordinary sieve strictly takes out particles bigger
than a predefined size. Alternatively, with the aid of an electric field one may separate
particles according to their charge. Such separating devices apply well-defined forces
which act differently according to a specific property of the particles that are to be sorted.
In the drift ratchet, however, it is the random noise itself which sorts the particles. This
complicates its understanding considerably, but raises hope for promising new applica-
tions. Especially when soft material is to be sorted, mechanical and chemical sieving
devices are prone to modify and damage the particles. A further aspect is that for conven-
tional sieving techniques down-scaling is non-trivial. Thermal fluctuations, which are
present all the time in small systems, make down-scaled sieving techniques inefficient.
Sorting with the aid of this thermal noise thus appears as a promising alternative.
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water flow

water flow

average particle drift

dynamic particle accumulation

(a)

(b)

Figure 1.4. Panel (a) depicts the boundary shape of the drift ratchet. Panel (b) shows one alternative for
the active region in the middle of an eight-shaped flow in Figure 1.5. Both shapes indicate two elementary
cells which are meant to be periodically continued to the left and to the right. In the narrow channel of
the drift ratchet (a), water is pumped back and forth. The resulting average drift of immersed particles is
parallel to the main flow direction in the channel. In panel (b), the water flow is stationary, always in one
direction. Particles are advected by the flow, mainly along the channel. In a periodically closed channel,
however, a drift perpendicular to the main flow can be expected due to the asymmetry of the channel
shape.

1.3.2. Particle transport in open channels

The major motivation of the present thesis is to deepen the understanding of the mechan-
isms of the drift ratchet and to explore the potential realisation of a similar effect in the
SAW-driven microfluidic setups with free surfaces. From an experimental point of view,
the “flat fluidics” with the SAW is preferable to the micro-pores in silicon. Pumping wa-
ter through such thin pores requires extremely high pressures. The reason are the sticky
channel boundaries, where the flow velocity vanishes. The highest velocity is found in
the middle of the channel, but it cannot be very high since the boundaries are not far. Free
surfaces are different in this respect. The velocities may be highest at the free surface,
where the distance to the wall is greatest. It will thus be our aim in Chapter 3 to compare
the different influences of free boundaries and sticky walls on the transport properties of
particles.

In order to analyse the boundary effects of the particles, we consider the setup depicted
in Figure 1.5, which has successfully been employed by Strobl et al. (2006) for sorting
particles with the aid of electric forces. An eight-shaped wetting geometry is prescribed
on a flat, otherwise non-wetting substrate. The form of the water channel over the wetting
area of the substrate assumes the same form. The channel is kept together by the surface
tension of the water–air interface. Two inter-digital transducers, located near two corners
of the shape, emit SAWs which cause a stationary flow in the channel. The main flow
direction follows the two loops of the eight-shape. In the middle part, where these two
loops meet, the flow exhibits a family of streamlines starting and ending in stagnation
points on the left and the right sides of the boundary. Since streamlines coincide with
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1.3. Transport of small particles

Figure 1.5. A schematic view on a microfluidic setup for sorting particles (Strobl et al., 2006). The
sketch at the left side illustrates a water channel, shaped like the number 8, which is held in its form by
prescribed wetting properties on the flat substrate. The channel is confined by the surface tension of the
water–air interface. The water is driven by the SAWs which are emitted by the two inter-digital transducers
illustrated as blocks of several parallel lines. The water streams along the two halves of the eight-shape
and exhibits a family of streamlines which separate them. This defines two separate basins of water. Along
the separating streamlines, which are indicated by the dashed line, these basins touch, thereby allowing
immersed particles to transfer from one basin into the other. The probability of a particle to cross the
separating streamline depends on the shape of the fluid channel in the region where the two basins meet.
This region is marked with a hatched circle. Three different alternatives for the shape in the middle part of
the channel are depicted at the right. The boundary shapes exhibit one straight and one curved boundary at
the two different halves of the eight-shape. Due to this broken reflection symmetry we may expect particles
to cross the separating streamlines, as indicated by the dashed curves. Two of the indicated shapes posses
another broken reflection symmetry, similar to a ratchet shape. This may have additional effects on the
separating properties of the channels.

material lines in stationary flows, these streamlines completely separate the fluid in the
upper loop from the lower one. This defines two separate basins of water. Particles, when
immersed in this flow, do not generally follow the streamlines and thus might be able to
cross the separating streamlines and pass from one basin into the other. This leads to
a relative accumulation of particles in one of the basins, if they were originally equally
distributed.

The flow in the outer parts of the loops in Figure 1.5 is laminar. Nothing special hap-
pens to a distribution of particles, only thermal noise smooths the distribution a bit. The
interesting part is the separating streamline in the middle of the eight-shape. This zone
is marked by a hatched circle in Figure 1.5. In order to make particles cross the separat-
ing streamline, we have to make sure that they do not follow the streamlines completely.
This will be achieved by using differently curved boundaries of the channel, as indicated
in the right part of Figure 1.5. The influence of asymmetric boundaries on the particle
transport is similar as in the drift ratchet. Since the boundaries are not symmetric under
reflection, and since a far-from-equilibrium situation is guaranteed by the non-vanishing
flow at room temperature, we may expect a reaction of particles on the boundary shape
similar to the drift ratchet. A steady drift, however, cannot be expected. What we try
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1. Introduction

to achieve is the transport perpendicular to the main flow direction, whereas in the drift
ratchet it is parallel to it, see Figure 1.4. Because the water basins are confined in per-
pendicular direction, all we may expect is an accumulation of particles on one side. This
accumulation will reach its steady state after a while, and the drift will fade.
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2. Computing stationary free-surface
flows

The detailed discussion of free-surface flows in non-trivial geometries, requires a numer-
ical treatment. The present chapter contains the derivation of a numerical algorithm for
computing flow patterns with stationary free surfaces, governed by the Stokes equations
(1.4) and (1.6) together with the boundary conditions (1.9) and (1.11). For a numerical
solution of these equations, we need to write them in a different form. This require-
ment is motivated in the first section, where the concept of finite-elements discretisation
is introduced. In the following section, we proceed with the variational formulation
of the equations in a continuous notation. Especially the physical nature of the stress
balance (1.11) at the free surface needs an extensive treatment. As the free surface is
curved, it becomes necessary to employ a differential-geometric description, which can
then conveniently be used for the variation. A key element in the discretisation of the
resulting continuous equations is a novel stabilisation technique for the computational
mesh at the boundary. We find that a discretised free surface can partly be described as
a rubber blanket. Such a description has the advantage that the mesh at the boundary is
regularised automatically.

At the end of the chapter, we present numerical results in two spatial dimensions. As the
main application, we consider SAW-driven droplets, which are pinned on the substrate
and are deformed by their internal flow pattern. The form and the mechanism of the
driving by the SAW is not known precisely, so that only qualitative properties can be
obtained from the analysis of Figure 1.3 in Section 1.2. The numerical results, however,
will allow a conclusion on the nature of the driving by the SAW.

2.1. Basic finite-element discretisation

Many different numerical approaches to solve the Navier–Stokes equations can be found
in the literature (see Deville et al., 2002; Schwarz, 1986, 1991, to name only a few).
Generally, the idea behind all of them is to reduce a partial differential equation together
with its boundary conditions to a large system of algebraic equations. The solution vector
of this system contains the degrees of freedom (DOFs) which parameterise a discrete
approximation to the solution function of the differential equations. A finite-element
discretisation û of a function u is achieved using N node-based ansatz functions φd
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2. Computing stationary free-surface flows

together with the N -dimensional vector ~u= (u1, . . . ,uN) containing the DOFs,

û(x) =
N∑

d=1

ud φd(x) . (2.1)

The ansatz functions φd are defined on the elements of a computational mesh. Here, they
are assumed to be unity at exactly one node of the mesh and to vanish at all others. This
choice of the ansatz functions makes the DOFs ud to be the solution values at the nodes
of the mesh. Throughout this thesis, we will use first- and second-order approximating
ansatz functions. They are either linear functions of the reference coordinates of the
underlying element, or quadratic ones. The ansatz functions are smooth inside each
element and continuous at their boundaries. Therefore, they yield a piecewise smooth
continuous approximation of the solution function u. An overview over the commonly
used types of finite elements can be found in the book by Deville et al. (2002).

In the finite-element method, a differential equation is solved only in a weak sense: The
equations are tested, i.e. integrated together with a test function. An equation is then said
to hold in a weak sense if the integrated equation holds for all elements of an appropriate
set of test functions. The choice of the set of test functions plays a crucial role in the
discretisation of a problem. If the test functions are chosen to be the ansatz functions,
one refers to the Galerkin variant of the finite-element method. This variant is known to
be the preferable method for differential equations which can be obtained as Euler–Lag-
range equation of a known functional (Carey and Oden, 1986; Zienkiewicz and Taylor,
2000). As an illustration, we search for a stationary point of the functional

F :=

∫
V

F
(
u(x)

)
dV (x) (2.2)

with respect to a variation of u. The functionF is assumed to be smooth. The continuous
Euler–Lagrange equation then reads

0 =
∂F
∂u

(
u(x)

)
. (2.3)

The weak formulation of this equation coincides with the variation of F with respect
to u,

0 = δF [δu] =

∫
V

∂F
∂u

(
u(x)

)
δu(x) dV (x) , (2.4)

where δu denotes the test function. We compare the variation δF [δu] with the variation of
the discretised functional F̂ , which is defined as the integral of F , but which is evaluated
at the discretised function û. Hence, the discretised functional is a function of the N -
dimensional vector containing the DOFs, ~u= (u1, . . . ,uN), and the variation in the Euler–
Lagrange equation (2.4) is turned into a set of partial derivatives,

0 =
∂F̂

∂ud

=

∫
V

∂F
∂u

(
û(x)

)
φd(x) dV (x) . (2.5)
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2.1. Basic finite-element discretisation

The comparison of the continuous version (2.4) of the weak Euler–Lagrange equation
with the discrete one (2.5) indicates that the ansatz functions φd adopt the role of the
test functions δu. This equivalence between ansatz functions and test functions is the
content of Galerkin’s formulation of the finite-element method. The same is true for
more general functionals F (u,u,i) that also depend on derivatives of u. We then obtain
the discretised Euler–Lagrange equations from their continuous form by means of the
replacement

δu 7→ φd , (2.6 a)
δu,i 7→ (φd),i . (2.6 b)

Below, we will make use of these replacement rules when discretising the update equa-
tion for the free-surface position and the Stokes equations.

In many applications a computer program is used to obtain a solution of the algebraic sys-
tem of equations (2.5). If the continuous problem (2.3) is linear in the solution function,
then (2.5) is linear as well and can be solved with standard iterative methods (Meister,
1999). A system of nonlinear algebraic equations requires more consideration which
depends on the specific equations in question.

Imposing boundary conditions the natural way

One of the standard methods to account for boundary conditions in finite-element im-
plementations is to use a conveniently weighted integral of the boundary condition over
the surface. This integral occurs naturally from an integration by parts if the functional
depends on the derivatives of the solution function. A simple example will elucidate the
method. Consider the Poisson equation with Neumann boundary conditions,

∆u = f in V , (2.7 a)
N ·∇∇∇u = g on ∂V . (2.7 b)

In discretised form, after integration with a test function φd and integration by parts,
(2.7 a) can be written as the set of equations

−
∫
V

∇∇∇φd ·∇∇∇u dV +

∮
∂V

φd N ·∇∇∇u dA =

∫
V

f φd dV , (2.8)

where the index d runs over all degrees of freedom. In the natural implementation of the
Neumann boundary condition, one replaces the above surface integral of the weighted
left-hand side of (2.7 b) by the corresponding weighted integral of the boundary values g,

−
∫
V

∇∇∇φd ·∇∇∇u dV = −
∮
∂V

φd g dA+

∫
V

f φd dV . (2.9)
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Here, we have written the boundary integral on the right-hand side, indicating that it
contributes to the equation for u as an inhomogeneity. A computer algorithm for the
problem (2.7) has two options. It can either use the discretisation (2.8) for the Poisson
equation in the volume and satisfy the boundary condition (2.7 b) by other means. Or
it directly implements the natural discretisation (2.9) of the whole problem as a single
system of equations. Certainly, the latter way is the preferable one.

This convenient way of implementing a boundary condition requires that a weak formu-
lation of the problem in such a way that the terms involved in the boundary condition
naturally appear in a weighted surface integral. A Dirichlet boundary condition, which
specifies the values of u at the boundary, cannot be implemented in this way.

Concerning boundary conditions at a free surface, the question arises whether such a
natural implementation exists. To give an answer to this question, we first need a weak
formulation of the equations. It will be given in the next section. There, we will find the
boundary integral over the normal stress,∮

∂V

φd σijN
j dA , (2.10)

naturally occurring in the variational description of the Stokes equations. Therefore, a
so-called traction boundary condition, namely

σijN
j = gi on ∂V , (2.11)

which imposes a certain stress gi at the boundary, can be implemented in the natural way.
The perfect-slip condition (1.16), however, cannot. It differs from the traction boundary
condition in that the normal projection of (2.11) is not required. Instead, the kinematic
boundary condition (1.16 a) is to be enforced. We conclude that the perfect-slip boundary
condition for the given problem of an incompressible Stokes flow cannot be implemented
in a natural way.

Previous work and other approaches to free-surface
discretisations

Various numerical approaches for determining free-surface shapes have been proposed in
the past. Their suitability for a given physical problem depends on the specific properties
of the problem in question, such as the typical scales, whether the setting is time-depen-
dent or not, and whether non-trivial driving forces are involved. In his PhD thesis, Brink-
mann (2002) considers the stability of surface shapes in static situations, i. e. without
flow. He utilises the program surface evolver2 (Brakke, 1992) for minimising the free
energies of the surface and of contact lines. Myshkis et al. (1987) provide a comprehens-
ive survey of analytic methods and results, starting with free surfaces in static settings

2available on-line from http://www.susqu.edu/brakke/evolver/evolver.html
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and continuing with small oscillations of ideal and viscous fluid shapes and self-gravit-
ating liquids. Classical free-surface problems, such as the Stefan problem and Muskat’s
problem have been treated analytically and numerically by Crank (1984). He provides
variational formulations and numerical techniques, not involving surface tension. Fried-
man (1982) treats the mathematics of free-surface flows, providing inequalities for clas-
sical problems such as the Stefan problem and fluidic jets. He does also not include the
parameter regime of surface-tension dominated boundary shapes.

The numerical algorithms tackling the free-surface flow problem can roughly be classi-
fied into two groups: Either a fixed computational mesh is employed together with a
function describing the position of the free surface, or the computational mesh is moved
together with the fluid domain, yielding a sharp surface representation by element bound-
aries.

An established method of the first kind is the continuum method, proposed by Brackbill
et al. (1992). They circumvented the discretisation of the stress-balance (1.11) by intro-
ducing a body force which is concentrated near the free surface. The body force incor-
porates the effect of surface tension. We have tested this method, which is implemented
in the commercially available fluid-dynamics program FLUENT using a volume-of-fluid
discretisation. For a macroscopic system this technique worked fine. When the system
was scaled down to the microfluidic parameter regime, however, the method failed. In
a simple test example, we found that approximation errors of the free-surface bound-
ary condition contributed to the force balance in the Navier–Stokes equation and were
amplified in an uncontrolled manner. The reason for the numerical errors lies in the dis-
cretisation near the free surface. As the surface is not discretised as a sharp boundary, the
body force representing the surface tension is located not only on the boundary but must
be smeared out. This typically gave rise to a spurious velocity field which even occurred
when we started the iteration with the known solution. Problems with this method have
also been reported by Renardy and Renardy (2002) and by Popinet and Zaleski (1999).
Lafaurie et al. (1994) find the spurious velocities to be of the order of the ratio γ/η,
which is the dominant velocity scale in microfluidic systems. Consequently, the existing
continuum method appears to be inappropriate for the microfluidic parameter regime.

Another approach of the first kind has recently been proposed by Smolianski (2005).
He uses finite elements and a level-set description for the free surface and calculates
curvatures by derivatives of the distance function. Although his method employs a better
discretisation than the above mentioned volume-of-fluid technique, he still encounters
spurious velocity fields proportional to the ratio γ/η.

Methods of the second kind, representing the free surface by a sharp interface, are ex-
pected to work better in the microfluidic parameter regime. Algorithms of this class are
often referred to as “moving mesh” or “ALE” (Hughes et al., 1981) methods and gener-
ally require more involved techniques, keeping the computational mesh feasible and not
too distorted. The above mentioned surface evolver (Brakke, 1992) is one example of
such an algorithm. Another technique of the second kind which has successfully been
employed for tension-dominated free-surface problems is the boundary-element method
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(Pozrikidis, 1992; Zinchenko et al., 1997). The dimensionality of the equations is re-
duced to the dimensionality of the surface, thus providing the basis for an efficient imple-
mentation. The method employs Green functions for the homogeneous Stokes equations,
as will also be used in Chapter 3, and as is outlined in Appendix D. Unfortunately, the re-
duction of dimensionality can only be performed for Stokes equations with conservative
body forces, that can be absorbed into the pressure term (Pozrikidis, 1992). In the present
section, we allow for non-conservative body forces which are of particular experimental
relevance concerning the driving by the SAW.

Pioneering works for the finite-element implementation of the full free-surface problem
were published by Scriven and co-workers (Saito and Scriven, 1981; Kistler and Scriven,
1983; Scriven, 1960). They used spines to parameterise the movement of the computa-
tional mesh in coating flows and implemented Newton’s method for a Galerkin approxi-
mation scheme. This work was later continued under the designation “total linearization
method” by Cuvelier and co-workers (Cuvelier and Schulkes, 1990; Cuvelier et al., 1986).
Their description requires a height function for the free-surface position, which makes it
necessary to use well-adapted coordinate systems like polar cylindrical or spherical ones.
Whether a finally obtained free-surface shape will overhang must be known in advance.

In the present chapter, we extend the works of Scriven and Cuvelier to arbitrary surface
geometries. In our description, the parametrisation of the free surface is given directly
by the boundary parametrisation of finite elements. Hence, neither spines nor a height
function are needed. To properly take intrinsic curvatures of the free surface into consid-
eration, all equations are formulated in a fully covariant form.

2.2. Variational formulation of the stress balance at
a free surface

As stated above, for a finite-element discretisation we require a weak variational formula-
tion of the free-surface flow problem with vanishing Reynolds number. In the following,
this formulation will be derived in continuous notation with the aid of the calculus of
variations. The discretisation will then be treated in the next section.

Especially the stress balance (1.11) is of concern here. It combines all variables of the
problem, the pressure p, the velocity vi, and some attributes of the surface itself, namely
the curvature κ and the normal vectorNi. These variables generally have different ansatz
functions. Thus, the question arises which ansatz functions should be used for testing the
free-surface boundary conditions. In a continuous description, we will therefore search
for a weak formulation of the stress balance as the variation of a functional.

Section 2.2.1 introduces the required aspects of differential geometry for a proper de-
scription of the curved free surface. This description allows us to express the right-hand
side of the boundary condition (1.11) in weak variational form in Section 2.2.2. The
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2.2. Variational formulation of the stress balance at a free surface
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Figure 2.1. A sketch of the coordinate system on a two-dimensional surface A, which is embedded into
three-dimensional space. The surface coordinates ν are mapped from the reference domain E (left) onto
the surface A (right) via the parametrisation vector t(ν).

left-hand side then follows in Section 2.2.3. At this point of the derivation, the requested
weak formulation of the stress balance is given by the equality of two different variations
of two functionals. In Section 2.2.4 we then show that a combined variation in terms of
a single functional encounters serious problems.

2.2.1. Differential geometry of a surface

A smooth surface in D-dimensional space may be parameterised by D−1 surface co-
ordinates να (α= 1, . . . ,D−1) which determine the coordinates ti(ν) of points on the
surface in D-dimensional space. Both surface and space coordinates are illustrated in
Figure 2.1. In the numerical studies below, we will restrict ourselves to D = 2. The
general framework, however, remains valid in higher dimensions D≥ 2. The surface
coordinates ν are taken from the parameter set E ⊂RD−1. With ν running through E,
the whole free surface A is covered,

ti : E → R : ν 7→ ti(ν) , (2.12)

A = {e(i)t
i(ν) | ν ∈ E} . (2.13)

Here, e(i) is the ith basis vector in space. The connection between surface and space
coordinates is described by the surface-derivatives of the parametrisation functions (cf.
Aris, 1989, p. 215),

tiα(ν) := ti,α(ν) =
∂ti

∂να
(ν) . (2.14)

Understood as a contravariant D-dimensional space-vector, the quantity ti,α represents
the ith spatial component of the αth tangent vector Tα. At the same time, the mixed
tensor ti,α is a covariant surface-vector. We will therefore omit the comma wherever it is
not strictly necessary to indicate a derivative. The components of the metric tensor aαβ
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2. Computing stationary free-surface flows

of the surface are obtained from the scalar products (in D-dimensional space) of the
vectors Tα, reading

aαβ = gij t
i
α t

j
β . (2.15)

The metric tensor aαβ , its determinant a= det(aαβ), and its inverse aαβ are all nonlinear
functions of the tangential vector components tiα. Their explicit forms for one- and two-
dimensional surfaces are given in Appendix B. The normal vector of a two-dimensional
surface is given by the normalised cross-product of the two tangent vectors,

Ni =
1

2
εijk ε

αβ tjα t
k
β , (2.16)

where εαβ and εijk are the completely antisymmetric tensors in two and three dimensions,
respectively. The change of the αth tangent vector along the surface in the βth direction
is expressed by the covariant surface-tensor bαβ of the second fundamental form of the
surface. This tensor therefore comprises second surface-derivatives of the parametrisa-
tion functions ti,

bαβ = ti,αβNi . (2.17)

The trace of the tensor bαβ defines the curvature κ of the surface,

κ = aαβbαβ . (2.18)

By convention, the curvature of a sphere with outward pointing normal vector is negative.

2.2.2. The thermodynamic stress terms: without flow

In the particular case that only conservative forces f (c)
i =−Φ,i are involved, the fluid rests

(vi = 0) and can reach thermodynamic equilibrium with its environment. For this static
system the terms in the stress balance (1.11) can consistently be formulated in terms of
the minimisation of a free energy. The Stokes equation (1.6) reduces to 0 =−p,i−Φ,i

and is solved by
p(x) = Φ0 − Φ(x) . (2.19)

The arbitrary offset Φ0 of the potential will be set to zero in the following. Given the
pressure, the stress balance (1.11) without viscous terms becomes

0 = (γκ− p0 − Φ)N + γ,αT
α . (2.20)

This boundary condition can be obtained from a minimisation of the contribution to the
free energy by the free surface A. The surface free-energy is given by the integral of the
tension γ,

F(γ) :=

∫
A

γ dA , (2.21)

where dA denotes the infinitesimal surface area. Additionally, the volume V of the
fluid has to stay constant. In order to take this condition into account, we introduce a
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2.2. Variational formulation of the stress balance at a free surface

n

N

∂A

Figure 2.2. An illustration of the normal vectors N and n. The vector N is orthogonal to the surface A,
pointing out of the volume V , while n is orthogonal to the contact line ∂A and parallel to the surface.
n points out of the free surface into the substrate.

Lagrange multiplier λ. Thus, we have the Euler–Lagrange equation for a minimal F(γ)

with constant volume,

0 = δF(γ)[δt] + λδV [δt] . (2.22)

The variation δF(γ)[δt] expresses the change of F(γ) due to changes of the parametrisation
vector t. We will further use the notation δF(γ)/δt

i, defined by the relation

δF(γ)[δt] =:

∫
A

δF(γ)

δti
δti dA+

∫
∂A

δF(γ)

δti
δti dL , (2.23)

where δF(γ)[δt] is expressed in terms of δti only, and no surface-derivatives of δti occur.
The integration over the boundary ∂A stems from an integration by parts over the surface.
Since δF(γ) is a scalar, the quantity δF(γ)/δt

i must be a covariant vector in space. It is
called the Euler–Lagrange vector (Lovelock and Rund, 1975).

The applied conservative body force f (c)
i =−Φ,i adds another term to the functional cor-

responding to the mechanical property of the system trying to minimise its potential
energy

F(Φ) :=

∫
V

Φ(x) dV = −
∫
V

p(x) dV . (2.24)

The Euler–Lagrange equations for minimising the free energy functional

F := F(γ) + λV + F(Φ) (2.25)

consists of the terms δF(γ)[δt], λδV [δt], and δF(Φ)[δt]. All three variations are performed
by varying the parametrisation vector t of the surface. The calculation in Appendix B
leads to the following terms, if t is varied only on the free surface and not on the rigid
substrate:
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2. Computing stationary free-surface flows

δF(γ)[δt] =

∫
A

γ tαi δt
i
α dA , (2.26)

δV [δt] =

∫
A

Niδt
i dA+

1

D

∮
∂A

δti(Nkt
kni − nkt

kNi) dL , (2.27)

δF(Φ)[δt] =

∫
A

ΦNiδt
i dA = −

∫
A

pNiδt
i dA . (2.28)

The boundary ∂A corresponds to the contact line where substrate, fluid, and air meet
each other. The vector n in (2.27) is the tangential vector of the surface which is ori-
entated normal to the contact line. This vector has surface components nα and spatial
components ni = tiαn

α. Its orientation is defined such that it points into the substrate, as
illustrated in Figure 2.2. In equation (2.26) we have used the mixed contravariant surface-
and covariant space-vector tαi , which is defined as

tαi := gij a
αβ tj,β . (2.29)

The change of the surface free-energy (2.26) can be integrated by parts in order to remove
the surface-derivative from the variation δti, see Appendix B for the details. Making use
of the definition of the curvature (2.18), we obtain

δF(γ)[δt] = −
∫
A

γ κNiδt
i dA−

∫
A

γ,αt
α
i δt

i dA+

∮
∂A

γ niδt
i dL . (2.30)

The surface-integrals from equations (2.27), (2.28), and (2.30) can now be collected to
yield the stress balance in the static case,

0 = − δF

δt

∣∣∣∣
A

= (γκ− λ+ p)N + γ,αT
α . (2.31)

Comparing this equation with (2.20), we find complete agreement if we identify the
Lagrange multiplier λ with the ambient pressure p0. The free-energy functional (2.25)
can be rewritten in the usual thermodynamic form containing the pressure,

F =

∫
A

γ dA−
∫
V

p dV + p0

∫
V

dV . (2.32)

Note that the pressure p(x) has been introduced already in the decomposition of the stress
tensor (1.2) as a variable of local thermodynamic equilibrium. The form of (2.32), which
essentially leads to δF = γδA−(p−p0)δV , corroborates this notion of the pressure.

2.2.3. The dynamic stress terms: viscous flow

The static terms in the stress balance have been reproduced in equation (2.31) by making
use of the conservative part of the force. The remaining contributions to the Stokes
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2.2. Variational formulation of the stress balance at a free surface

equations, namely the viscous stress and the non-conservative forces, are still missing.
We now recapitulate how these terms can be understood as the result of a variational
principle. In a stationary system the temporal change of the kinetic energy at a point in
the fluid due to viscous dissipation is (cf. Landau and Lifschitz, 1966)

d

dt

1

2
ρv2 = −2ηeije

ij . (2.33)

The flow gains kinetic energy from the external driving at a rate

f (nc)
i vi . (2.34)

In a stationary system that is bounded by rigid immobile walls, the variational principle
which is attributed to Helmholtz and Korteweg (see Lamb 1932, p. 618 and von Helm-
holtz 1869) states that the Stokes equations yield those velocity and pressure fields that
render the functional

P(η) :=

∫
V

(ηeije
ij − f (nc)

i vi) dV (2.35)

minimal. Note that the full external driving (2.34) is used, whereas only half of the
dissipated power (2.33) enters the functional. Vice versa, the first variation of P(η) with
respect to the velocity variable becomes

δP(η)[δv] =

∫
V

(2ηeijδvi,j − f (nc)
i δvi) dV (2.36)

= −
∫
V

(2ηeij
,j + f i

(nc))δvi dV +

∮
∂V

2ηeijNjδvi dA . (2.37)

It vanishes for all variations of the velocity, if the integrands of the volume and of the
surface contributions vanish separately. In this way, one recovers the rotatory part of
the Stokes equation (1.8 b) and the viscous forces that are needed for the variational
formulation of the free-surface stress balance (1.11). Now, we can write the full stress
balance condition (1.11) in the form

δP(η)

δv

∣∣∣∣
A

= −
δF(γ)

δt

∣∣∣∣
A

−
δF(Φ)

δt

∣∣∣∣
A

− p0
δV

δt

∣∣∣∣
A

. (2.38)

This equation reveals that the two terms in the stress balance equation (1.11) have differ-
ent physical origins. Both surface tension and pressure are of thermodynamic (or rather
of thermo-“static”) nature, while the viscous stress originates from dynamic considera-
tions. The right-hand side results from minimising the free energy, as in the static case.
The left-hand side, however, stems from minimising a power. Formally, the static and
dynamic origins are expressed by the different variations δt and δv in (2.38).
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2. Computing stationary free-surface flows

Both Stokes equations in variational form

Although the variational formulation (2.38) of the free-surface stress balance correctly
displays the different physical origins of the dynamic and the static contributions, its
derivation is not quite satisfactory. In order to explain this concern, we return to the role
of the pressure. In (2.38) both pressure terms, namely δF(Φ) and p0δV appear on the
static side of the variation. Nevertheless, it is likewise possible to obtain the pressure
terms from a dynamic variation with respect to δv. The functional

P := P(η) +

∫
V

(p0v
i
,i − pvi

,i + Φ,iv
i) dV (2.39)

=

∫
V

[
(p0g

ij − pgij + ηeij)vi,j − f ivi

]
dV (2.40)

depends on both, pressure and velocity variables. The corresponding first variations are

δP [δp] = −
∫
V

vi
,iδp dV , (2.41)

δP [δv] =

∫
V

[
(p0g

ij + σij)δvi,j − f iδvi

]
dV (2.42)

= −
∫
V

(σij
,j + f i)δvi dV +

∮
∂V

(p0g
ij + σij)Njδvi dA . (2.43)

This variant of the variation is certainly preferable to the form of equation (2.37). It
yields both Stokes equations in their weak form, the incompressibility condition, tested
with δp in (2.41), and the balance of linear momentum, tested with δv in the volume
integral of (2.43). It contains the full external driving force with its conservative and
non-conservative parts. At the surface, it provides the whole normal stress, tested also
with δv. Instead of (2.38), the stress balance at the free-surface now reads

δP

δv

∣∣∣∣
A

= −
δF(γ)

δt

∣∣∣∣
A

. (2.44)

Equation (2.44) gives an understanding of the equilibration mechanism. The system tries
to minimise P by changing its velocity, competing against the surface tension in F(γ),
which should also be minimal by changing the surface position. However, there is a mu-
tual dependence of v and t via the kinematic boundary condition. Velocity and surface
cannot be changed independently.

Consequences for the discretisation

If we assume a Galerkin discretisation of the equations (2.41) and (2.43), we then find
that the incompressibility equation is tested with the ansatz functions of the pressure,
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2.2. Variational formulation of the stress balance at a free surface

and the Stokes equation with those of the velocity. A celebrated mathematical theorem,
referred to as the inf–sup condition, or Ladyzhenskaya–Babuska–Brezzi (LBB) require-
ment, states that a stable discretisation is obtained if the incompressibility equation is
tested with functions of one order less than the Stokes equation. Thus, in the framework
of equations (2.41) and (2.43), this requirement means that the pressure has to be approx-
imated one order less than the velocity variable. From a physical perspective, this is not
astonishing because the pressure and the derivatives of the velocity together constitute
the very same quantity, namely the stress tensor. In the numerical implementation below,
we will use a first-order approximation for the pressure and a second-order approxima-
tion for the velocity.

The variation with respect to different variables in (2.44) poses a problem for the numer-
ical implementation of the free-surface flow. There, a weak formulation of the problem
will be required, which means that the stress balance (1.11) is integrated together with a
test function. The question of the proper choice of test functions remains. The left-hand
side of the stress balance (2.44) is naturally tested with δv, leading to the surface-varia-
tion term δviσijN

j in equation (2.43). The right-hand side of equation (2.44), however,
indicates testing with δt, providing the term γκNiδt

i, see equation (2.30).

In the discretisation, it is possible to circumvent this inconsistency of the weak formula-
tion of the stress balance by using the same test functions for δt and δv. On the level of
a Galerkin finite-element implementation, this requires also the ansatz functions for the
velocity field and for the surface parametrisation to be of the same order. It was stated
by Bänsch (1998, p. 42, see also citations 49 and 50 therein) that a second-order ap-
proximation of the surface parametrisation yields a “good discrete curvature,” whereas
a first-order one does not. The same can be seen below in Figure 2.5. We have now
been able to substantiate Bänsch’s numerical observation with the underlying physical
mechanism, namely the different physical origins of the terms in equation (2.44). The
argument is similar to that of the LBB requirement for the approximation of the Stokes
equations.

2.2.4. Completely dynamic formulation

With equation (2.44), we have obtained the stress balance condition at the free surface in
terms of the variation of two different functionals. We now search for a combined func-
tional which allows to express the boundary condition as a single variation. This search
succeeds only partly. For the numerical treatment in the next section, we will therefore
revert to the description (2.44) of the stress balance at the free surface. Nevertheless,
the following rather technical aspects are of interest for a detailed understanding of the
variational treatment of free surfaces.

In equation (2.44), the static and dynamic aspects of the stress balance are represented
by the two variations with respect to δt and δv. The physical dimensions of t and v
differ by a time, and so do the dimensions of the free energy F(γ) and the power P . A
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2. Computing stationary free-surface flows

combined description requires the variables to have equal dimensions. Consequently, we
must either differentiate t with respect to the time, or integrate v over the time. As the
Stokes equations directly follow from the variation δP in the volume, we do not modify
P and v, but rather consider the derivatives of F(γ) and t with respect to time.

The change of the free energy due to a free surface changing in time is expressed in terms
of the parametrisation velocity ṫ,

Ḟ(γ)(ṫ, t) :=

∫
A

γ ṫi,α t
α
i dA (2.45)

= −
∫
A

γκ ṫiNi dA−
∫
A

γ,αt
α
i ṫ

i dA+

∮
∂A

γṫini dL , (2.46)

where an integration by parts yields the second identity (2.46). Both the normal and
the tangential projections of the parametrisation velocity enter the functional Ḟ(γ) via
the terms ṫiNi and tαi ṫ

i, respectively. With the aid of the full time-dependent kinematic
boundary condition

viNi = ṫiNi , (2.47)

the normal component of ṫ in (2.46) can be replaced by the normal component of the
velocity field v. We obtain a functional depending also on v,

Ḟ(γ)(v, ṫ, t) := −
∫
A

γκviNi dA−
∫
A

γ,αt
α
i ṫ

i dA+

∮
∂A

γṫini dL . (2.48)

A similar functional, but with constant surface tension, has been considered by Skalak
(1970). He proves that the stationary point of (2.48) with respect to a variation of v
minimises Ḟ(γ). Another variant of the functional (2.45) is defined if one substitutes ṫ
by v,

P(γ)(v, t) :=

∫
A

γ vi
,α t

α
j dA . (2.49)

This functional has been considered by Ho and Patera (1991), aiming at a “variational”
formulation of the free-surface boundary conditions in the full time-dependent Navier–
Stokes equations.3 Compared to (2.45), in (2.49) not only the normal component of
the parametrisation velocity ṫ is replaced by the velocity field v, but also the tangential
components. Hence, the two functionals P(γ) and Ḟ(γ) do not represent the same physical
quantity.

The three functionals in (2.45), (2.48), and (2.49) indeed provide some of the terms
required in the weak stress-balance condition. The first variation of Ḟ(γ) with respect to ṫ

3According to the notion of variational used in this thesis they rather provide a weak formulation.
Moreover, Finlayson (1972) shows that the stationary nonlinear Navier–Stokes equation cannot be ob-
tained as the Euler–Lagrange equation of a functional, when varied with respect to the velocity field.
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reads

δḞ(γ)[δṫ] =

∫
A

γ tαi δṫ
i
,α dA (2.50)

= −
∫
A

δṫi(γκNi + γ,αt
α
i ) dA+

∮
∂A

γniδṫ
i dL . (2.51)

The free-surface stress balance (2.44) can therefore be written as

δP

δv

∣∣∣∣
A

+
δḞ(γ)

δṫ

∣∣∣∣∣
A

= 0 , (2.52)

which again requires two different variations. The first variation of Ḟ(γ)(v, ṫ,t) with
respect to v reads

δḞ(γ)[δv] = −
∫
A

γκNiδv
i . (2.53)

It does not contain the surface gradient of the surface tension. Only the third functional,
P(γ) provides exactly what is needed to write (2.44) in terms of the variation of a single
functional with respect to a single variable, namely

δ(P + P(γ))

δv

∣∣∣∣
A

= 0 . (2.54)

There is, however, a serious caveat against the calculation above. In order to explain our
concerns, we return to the physical situation that is described by the functionals (2.45),
(2.48), and (2.49). Since the velocity at the boundary is not restricted to be tangential, all
three functionals describe a fully time-dependent free surface. However, a moving free
surface with considerable surface tension typically leads to an unsteady flow. Stationary
flows can easily be obtained with free surfaces without surface tension, such as mater-
ial lines of the flow. Stationary flows can also be expected for time-independent free
surfaces. For moving surfaces with tension, however, there are only very few special
situations which result in a stationary flow, if there are any.

We arrive at the following dilemma: If one of the three functionals above is taken to
describe a time-dependent free surface, then the resulting time-dependent flow in the
volume is not described by P anymore. If, on the other hand, P is taken for granted, then
we are missing a condition for the stationarity of the free surface – and thus for the flow.
This condition, which must be obtained from the functionals above, reads

ṫiNi = 0 . (2.55)
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2. Computing stationary free-surface flows

Up to now we have not made use of the argument t of the functionals. Let us see,
whether the stationarity condition can be found as the first variation with respect to t,
reading for Ḟ(γ),

δḞ(γ)[δt] =

∫
A

δtiNi

{
2γKṫiNi − γ(ṫiNi),αβa

αβ − γ,αa
αβ(ṫiNi),α

− γκṫα,α − γṫακ,α + γṫα,βb
β
α − γ,αb

αβṫβ
}
dA

+

∫
A

δtitαi

{
− γκ(ṫiNi),α + γ,ακṫ

iNi − bβαγ,β ṫ
iNi

− γκbβαṫβ − γ,αṫ
β
,β + γ,β ṫ

β
,α

}
dA

+

∮
∂A

δti(· · · ) dL .

(2.56)

K denotes the Gaussian curvature of the surface, being the determinant of the tensor bαβ

of the second fundamental form. From (2.56) we obtain D further equations for the
parametrisation velocity at the boundary, namely the curly braces in equation (2.56) set to
zero. The first is due to the position variation in normal direction, the other in tangential
directions, which are independent of each other. Note that the tangential components of
the parametrisation velocity, given by the terms ṫα, do not alter the position of the surface.
The time-dependent parametrisation can always be chosen such that ṫα vanishes. We
may therefore omit them in (2.56) without loss of generality and write the new boundary
conditions as

0 = 2γKṫiNi − γ(ṫiNi),αβa
αβ − γ,αa

αβ(ṫiNi),α , (2.57 a)

0 = −γκ(ṫiNi),α + γ,ακṫ
iNi − bβαγ,β ṫ

iNi . (2.57 b)

When ṫiNi = 0, these equations are fulfilled. The other way holds at least for constant γ:
Since neither the curvature κ nor the Gaussian curvatureK can be assumed to vanish, the
second equation (2.57 b) renders (ṫiNi) constant. The first equation (2.57 a) then yields
the stationarity condition (2.55). Hence, the D boundary conditions in (2.57) collapse
into one single equation, namely the required stationarity condition (2.55).

The argumentation for Ḟ(γ) fails for the functional P(γ). The variation of P(γ) has the
same form (2.56), only the parametrisation velocity ṫi is substituted by the flow velo-
city vi. The resulting D boundary conditions therefore contain the tangential velocity vα,
which cannot be argued to vanish. Above, equation (2.54) made the functional P(γ)

preferable to Ḟ(γ) in both variants (2.45) and (2.48), because it yielded the stress balance
at the free surface as a single variation. We now found that P(γ) is not able to yield the
necessary stationarity condition (2.55).

The variation with respect to t is not yet complete. The change of the volume contribu-
tion P due to changes of the surface positions is still missing. It reads

δP [δt] =

∫
A

δtkNk

[
(p0g

ij − pgij + ηeij)vi,j − f ivi

]
dA . (2.58)
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2.2. Variational formulation of the stress balance at a free surface

The term in brackets is added to the right-hand side of equation (2.57 a) and destroys its
interpretation as the desired stationarity condition. Note that the right-hand side of (2.58)
contains a quadratic term in the derivatives of the velocity. This term can generally not
be compensated by one of the definitions (2.46), (2.48) or (2.49), which are all linear in
the velocity.

We have to conclude that a minimisation principle with neither of the functionals (P +
Ḟ(γ)) and (P +P(γ)) yields the stationary free-surface problem.4 For the algorithmic for-
mulation below, we thus revert to the variational description given in (2.44). This implies
that we must use the same approximation order for the discretisation of the velocity and
of the parametrisation of the surface.

2.2.5. Second variations

The search for the correct shape of the free surface requires the solution of equation (2.44)
which is nonlinear in the parametrisation of the surface. One way to find the solution of
a nonlinear equation is a Newton–Raphson iteration (Bronstein et al., 1995). We will
utilise this method in our algorithm and therefore need a second variation of both the
surface free energy F and the power P with respect to the parametrisation of the free
surface. With the aid of the calculus of variations in Appendix B, the second variation
of F(γ) is obtained as

δ2F(γ)[δt, δt] = δ

(∫
A

γ tαi δt
i
α dA

)
[δt] (2.59)

=

∫
A

γ δtiαδt
j
β (NiNja

αβ + tαi t
β
j − tβi t

α
j ) dA . (2.60)

In contrast to the first variations, a transformation into the tensor form δ2F(γ)/δtδt is not
possible here. No integration by parts can remove the derivatives from both test functions

4The stress balance (2.44) as a variation of a single functional with respect to a single variable would have
eased the consistent finite-element formulation of the free-surface stress balance and the development
of a stable numerical algorithm. Below, in equation (2.63) we will require the mutual dependence of
viscous stress and parametrisation when calculating second variations of the functionals. These mutual
dependencies are not known without a combined functional. A single functional would also help to
really understand the dissipative mechanisms in the stationary stress balance. It is astonishing that both
the static free surface shape and the viscous flow can be obtained from individual minimisations, while
both together cannot. Moreover, the description of the free surfaces given here might then be extended
from pinned contact-lines to steadily moving ones, similar to the analysis by Hadjiconstantinou and
Patera (2000).
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δti and δtj at the same time. The second variation of P is found to be

δ2P [δv, δt] = δ

(∫
A

σijN
jδvi dA

)
[δt] (2.61)

=

∫
A

δviσj
i δt

k
α(Njt

α
k − tαjNk) dA+

∫
A

δviN j δσij[δt] dA . (2.62)

The last integral contains the change of the fluidic stress at the boundary due to changes
of its position, denoted by δσij[δt]. This term cannot be expressed in analytic form. The
changes of the shape are communicated to the flow fields via the boundary conditions
(1.9) and (1.11). At the same time, the flow fields satisfy the Stokes equations in the
volume. This very indirect response of the stress tensor on the changes of shape cannot
be expressed explicitly.

One might argue that the indirect response of the stress tensor on the changes of the
boundary positions is a second-order response and should therefore be neglected. That
this is not necessarily the case can be shown for the pressure part of the stress tensor:
Above, we have used the pressure in both the dynamic and the static variation, which led
to the equivalent variational formulations of the free-surface stress balance (2.38) and
(2.44). The pressure contribution in the second variation (2.61) with respect to the mixed
variables [δv, δt] can therefore be replaced by the second variation δ2F(Φ)[δt, δt]. This is
of the same order as the terms δ2F(γ)[δt, δt] in (2.59). We therefore include the pressure
term for the generally unknown change of the stress tension due to changes of the shape.
Here, we take the pressure field, which is generated by the external body force and does
not have to fulfil any boundary conditions, as quite independent of the precise shape of
the surface. The change of the pressure is then well approximated by its gradient together
with the change of the surface,

δσij ≈ −gij p,k δt
k . (2.63)

This approximation becomes exact in the static case without flow. The variation of the
viscous contributions in (2.63) with respect to the parametrisation of the free surface is
not known to us. It would follow from a formulation of the free-surface problem in terms
of a single functional, which is not available.

2.3. Finite-element discretisation in two dimensions

Seeking for a numerical solution of the free-surface Stokes problem, we choose the weak
formulation in terms of equations (2.41), (2.43), and (2.44). In the volume, the Stokes
equations with external driving force read

0 =
δP

δp

∣∣∣∣
V

and 0 =
δP

δv

∣∣∣∣
V

. (2.64 a,b)
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T′
T′′

−κN

Figure 2.3. A visualisation of the tension forces −δF(γ) from (2.26) in the weak variational description
of the free-surface stress condition. The smooth curve, which represents a one-dimensional free surface,
is approximated by the sides of first-order finite elements. The elements provide the mesh for solving
the flow equations. At the boundary nodes, the tangential vectors are not continuous. Thus, neither a
normal vector nor a curvature can be calculated. The situation can be improved only gradually but not
generally by employing second-order finite elements. For the weak formulation (2.26) of the tension
forces, a smooth representation of the surface is not needed anymore. The formulation is such that for a
node the contributions of the adjacent finite-element sides are given by their respective tangential vectors,
scaled by the surface tension. The directions of the pulling forces, indicated by dashed arrows, are the
normalised tangent vectors. The solid arrow indicates the direction and the magnitude of the resulting
force, which is an approximation of the normal vector, scaled by the curvature κ of the surface. From the
continuous equations (2.26) and (2.30) it can be seen that this approximation becomes exact in the limit of
short element sides.

At the boundary, the surface-stress boundary condition (1.11) is given in variational form
by equation (2.44),

δP

δv

∣∣∣∣
A

= −
δF(γ)

δt

∣∣∣∣
A

.

Additionally, the kinematic boundary condition (1.9) must be satisfied, which cannot be
derived from variational principles in the present framework. We will therefore impose
it in its strong form (1.9).

A discretisation by finite elements requires a computational mesh together with piece-
wise smooth ansatz functions. We choose the ansatz functions to be node-based functions
yielding unity at exactly one node of the computational mesh, and zero at all others. The
functions that can be approximated in this way are continuous, but not everywheredif-
ferentiable. We use first-order ansatz functions ψd(x) for the pressure and second-order
ansatz functions φd(x) for the Cartesian velocity components,

u(x) =
∑

d

ud φd(x) , v(x) =
∑

d

vd φd(x) , (2.65 a)

p(x) =
∑

d

pd ψd(x) . (2.65 b)

We recall that also the geometry of the free surface, bounding the fluid, is part of the
problem. Thus, the positions of the mesh nodes themselves are to be calculated. For the
Cartesian components of points inside the finite elements and on their boundaries, we
introduce the variables r and s, approximated with ansatz functions χd,

r(x) =
∑

d

rd χd(x) , s(x) =
∑

d

sd χd(x) . (2.66)
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These two functions, although they appear to be quite redundant when read as r(x,y) =x
and s(x,y) = y, are nevertheless needed to obtain the Cartesian components of the mesh
nodes. Since our ansatz functions are node-based, the coordinates (xd,yd) of the dth
node coincide with the values (rd, sd) that can be calculated with. Equation (2.66) thus
provides the geometry of the finite elements, which consist of a set of nodes together with
a set of ansatz functions. They parameterise the boundaries and the volume between the
nodes. Unless stated otherwise, we will use second-order ansatz functions χd for the
approximation of the geometry of finite elements, yielding second-order finite elements.
An important consequence of using ansatz functions for the geometry of the finite ele-
ments is that the parametrisation of the mesh is only piecewise smooth, when understood
as the mapping from reference coordinates onto Cartesian coordinates. The reference
coordinates are defined independently for each finite element. As a consequence, the
boundaries of the mesh are not smooth at the nodes. This fact has severe implications for
the discrete representation of a free surface, as is illustrated in Figure 2.3. The sides of
the elements are parameterised by first-order, i. e. linear ansatz functions. The tangential
vector is discontinuous at the boundary nodes, therefore neither normal vectors nor the
curvature can be calculated. The curvature of the original smooth curve rather collapses
into the corners at the boundary nodes. The linear approximation in Figure 2.3 has been
chosen to demonstrate this in a distinct way. A second-order approximation improves
the approximation significantly, but cannot relieve the problem with the corners. Still,
the curvature of a second-order element side provides only a poor approximation of the
“true” curvature of the original curve.

The dependence of the curvature on the second surface-derivatives of the parametrisa-
tion ti can be replaced by a product of two first derivatives, one of them being a tan-
gential vector, see equation (2.26). By using this trick, we avoid the explicit use of the
curvature κ in the free-surface stress balance, which stems from (2.30). Then, a piece-
wise smooth approximation of the surface suffices, such as the one in Figure 2.3. In
contrast to the curvature, the tangential vectors in (2.26) can easily be calculated using
finite elements. The integration by parts of the curvature term has been used in different
contexts in the literature (Brakke, 1992; Dziuk, 1991; Zinchenko et al., 1997; Bänsch,
1998).

From a physics perspective, the formulation (2.26) of the tension terms is the more nat-
ural one, compared to (2.30). From (2.26), one directly deduces that forces pulling along
the tangential direction attempt to minimise the facet area of an element. The pulling
forces of adjacent elements add up to the tension force which is proportional to the
curvature. Figure 2.3 depicts this for first-order elements.

2.3.1. Separating the algorithm into two steps

As pointed out in the introduction, for free boundaries a twofold problem must be solved:
(i) The unknown fluid domain V is to be determined and (ii) the Stokes equations
(1.4) and (1.6) are to be solved within V , using the boundary conditions (1.9) and (1.11).

36



2.3. Finite-element discretisation in two dimensions

The latter both depend on the shape of V via the normal vector and the curvature at the
boundary. Both parts cannot be processed independently. In principle, there exist two
options to deal with this combined problem. The first is to implement a single numerical
system of coupled algebraic equations for both, the flow variables p and vi, together with
the geometry variables ti. We will not follow this direction but rather solve two smaller
systems of equations consecutively, one for the flow variables, depending on the current
domain V , and a second one for the parametrisation of the boundary. We have chosen
this approach because the problem is linear in the flow variables and highly nonlinear in
the geometry variables ti. Nonlinearities are unavoidable in the geometric description of
the free surface. In our approach, the nonlinearities are confined to one relatively small
subsystem.

The nonlinearity of the boundary condition can explicitly be seen in the definition of the
surface metric (2.15). The Jacobi determinant

√
a and the inverse metric aαβ are nonlin-

ear functions of the parametrisation as well. They occur in the strong formulation (1.11)
as well as in the variational formulation (2.44), and also in the different terms of the
weak variational formulation in equations (2.26)–(2.28) and (2.37). The nonlinearity is
not a consequence of an unnecessarily complicated parametrisation, but of the intrinsic
property of the free surface being curved. A linear parametrisation describes flat surfaces
only. Numerical algorithms for solving nonlinear equations are subject to various prob-
lems. First, the uniqueness of a solution is not granted in nonlinear systems. Instead,
the particular solution found by an algorithm may depend on the initial state. Another
problem concerns stability. A solution can only be approached step-wise, and there is no
guarantee that the system finds its way from the initial state to a solution.

Our approach, namely to confine the nonlinearities into one of the sub-problems, makes
it necessary to process the whole algorithm as a succession of two steps. In one step,
the velocity and the pressure fields are determined. This step requires the solution of
the Stokes equations, which are linear in the velocity and pressure variables. The other
step performs the nonlinear search for a better boundary shape. In the following, the
two numerical systems which perform the two steps will be called fluidic system and
geometric system, respectively.

For the linear fluidic system, D boundary conditions uniquely determine the solution. In
D-dimensional space, the equations (1.9)–(1.11) pose D+1 boundary conditions, which
is one too many for the linear fluidic system to be fully determined. The remaining
boundary condition is therefore used for updating the parametrisation of the free sur-
face (Cuvelier and Schulkes, 1990). There has been a controversy which boundary con-
dition should be used for updating the surface. One possible candidate is the kinematic
boundary condition (1.9). The general procedure in this case is that the stress balance
condition (1.11) determines the flow field, while the resulting velocity vi at the boundary
is employed to move the surface. A different possibility utilises the stress balance condi-
tion for the flow field and moves the free surface according to the resulting normal stress.
Saito and Scriven (1981) claim that when the capillary number falls below unity, an iter-
ation by the normal stress converges well and a kinematic iteration eventually fails. As

37



2. Computing stationary free-surface flows

the capillary number rises beyond unity, the performances of the two iteration schemes
are reversed. The main challenge for a numerical algorithm is therefore the proper as-
signment of specific boundary conditions to the two sub-systems in order to make them
solvable, uniquely determined, and robust. It is clear that the no-slip boundary condi-
tion (1.10) at sticky walls applies only to the fluidic system. The free-surface boundary
condition still needs further consideration.

In Section 1.1.4, the assignment of boundary conditions to the fluidic and the geometric
problem has been addressed in the limit of infinite surface tension. In this limit, the mu-
tual dependence of the two problems is removed completely. The assignment of bound-
ary conditions must then be chosen such that the flow obeys a perfect-slip condition,
while the normal projection of the stress-balance yields the Laplace–Young equation,
which determines the shape of the free surface. In the microfluidic parameter regime,
the surface tension is not infinite but large, leading to capillary and Bond numbers up to
the order of unity, see Section 1.1.3. We therefore expect the two sub-problems to be de-
coupled sufficiently if the assignment of the system is the same as in the limit of infinite
surface tension. This is the central assumption, on which the presented algorithm rests.
The normal component of the stress balance is thus assigned to the geometric system,
while the perfect-slip condition (1.16) is imposed on the flow.

The fluidic system

The fluidic system is implemented according to the variational formulation of the Stokes
equations (2.64) in the volume. The weak variational formulation can be obtained from
the volume integrals in equations (2.41) and (2.43),

0 = −
∫
V

vi
,i δp dV , (2.67)

0 = −
∫
V

(σij
,j + f i) δvi dV

= −
∫
V

f iδvi dV +

∫
V

σijδvi,j dV −
∮
∂V

σijNj δvi dA .
(2.68)

These equations are subject to the slip boundary conditions, which consist of the kine-
matic boundary condition (1.9) and the tangential projections of the stress balance (1.11).
According to the variational formulation (2.44), the latter can be written as

T · δP
δv

∣∣∣∣
A

= 0 , (2.69)

because for constant surface tension the variation of F(γ) is always orthogonal to the
surface. Equation (2.69) allows us to write this part of the slip boundary condition in a
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weak variational form ∫
A

σij N
j δvi dA = 0 . (2.70)

According to the LBB requirement, we approximate the pressure variable with the first-
order ansatz functions ψd and the Cartesian components of the velocity field independ-
ently with the second-order ansatz functions φd. Together with the approximation (2.65)
of the solution functions and with the discretisation rule (2.6), which here becomes

δp 7→ ψd , (2.71)

ex · δv 7→ φd , ei
xδvi,j 7→ (φd),j , (2.72 a,b)

ey · δv 7→ φd , ei
yδvi,j 7→ (φd),j , (2.72 c,d)

the Stokes equations in the volume are cast into the linear system of equations for the
DOFs, which are grouped into the vectors ~u, ~v, and ~p, Kuu 0 Kup

0 Kvv Kvp

Kpu Kpv 0

 ~u
~v
~p

 =

 Lu

Lv

0

 . (2.73)

The first two rows correspond to the Stokes equation, while the last row is the discretisa-
tion of the incompressibility condition. The block matrices K and vectors L are given by

[Kuu]de = [Kvv]de = η

∫
V

∇∇∇φd ·∇∇∇φe dV − η

∮
∂V

φdN ·∇∇∇φe dA , (2.74 a)

[Kup]de = −
∫
V

(∂xφd)ψe dV +

∮
∂V

φdψeNx dA , (2.74 b)

[Kvp]de = −
∫
V

(∂yφd)ψe dV +

∮
∂V

φdψeNy dA , (2.74 c)

[Kpu]de = −
∫
V

ψd∂xφe dV , (2.74 d)

[Kpv]de = −
∫
V

ψd∂yφe dV , (2.74 e)

[Lu]d =

∫
V

φdfx dV , (2.74 f)

[Lv]d =

∫
V

φdfy dV . (2.74 g)
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All integrals are assembled in a loop over the elements and the sides of the mesh, using
a fifth-order Gaussian quadrature rule. The fluidic system could likewise implement the
stationary Navier–Stokes equations with a small Reynolds number. Here, we have chosen
the Stokes equation for simplicity and for consistency with the variational derivation of
Section 2.2.

In Section 2.1, it has already been announced that the perfect-slip boundary condition of
equation (1.16) is not a “natural” boundary condition for the stationary Stokes equation.
The slip boundary condition specifies the tangential component of the normal stress to-
gether with the kinematic condition. The naturally occurring boundary term (2.70), see
also equation (2.43), however consists of the whole normal stress, containing tangential
and normal components. The kinematic boundary condition is not included in the varia-
tional principles at all. Therefore, the slip boundary condition is not a natural boundary
condition and has not been embedded into the linear system (2.73). Instead, we have
to find a different method to enforce the slip boundary condition. One possibility is to
employ a constraint technique: A DOF ud, which resides on a boundary node and thus
carries a boundary condition, is expressed by an inhomogeneity plus a weighted sum of
other DOFs,

ud = wd +
∑
e6=d

wde ue . (2.75)

The DOF ud is then completely eliminated from the linear system (2.73). In this way, we
implement the kinematic boundary condition (1.9) as

0 =
∑

d

(udNx + vdNy)φd . (2.76)

In the same manner, the tangential projection of the weak free-surface boundary condi-
tion (2.70) is written as

0 =
∑

e

(
ue

ve

)
·
(

2TxNx

TxNy +TyNx

TxNy +TyNx

2TyNy

)∫
A

φd

(
∂xφe

∂yφe

)
dA . (2.77)

The constraint equations (2.76) and (2.77) differ only with respect to the weights wde.
The inhomogeneity wd is zero in all three equations. Non-zero inhomogeneities would
result if also a surface-gradient term of the tension were taken into account in equa-
tion (2.77), or if the rigid walls performed a tangential movement.

In both constraint equations (2.76) and (2.77), a consistent definition of normal and tan-
gential vectors is crucial. In Section 2.2, we found that for the tension-related aspect of
the free-surface the definition of a normal vector at the nodes can be avoided. Here, we
do not have a proper weak formulation which would allow to integrate by parts. As a
starting point, we define the normal vector at a node as the arithmetic average of the nor-
mal vectors of the adjoining finite-element sides. Behr (2004) observed that an improper
choice of the normal direction can cause spurious contributions in the velocity field, even
if only conservative forces are applied. He recommends the use of a normal vector which
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2.3. Finite-element discretisation in two dimensions

is averaged with the stress on each adjoining side. Walkley et al. (2004) use arithmetic
averages in three-dimensional calculations. In the presence of only conservative forces,
we did not find spurious flows in our results.

The constraint equation (2.77) has the unwanted side-effect that each of the DOFs resid-
ing on a boundary node is defined in terms of all its neighbours on the boundary. Thus,
all boundary DOFs are cross-linked. This leads to a nearly fully filled system-matrix
which is prohibitory regarding memory capacity and computing time. We found that
an iterative method can overcome this problem. Instead of defining a boundary DOF in
terms of all its neighbours, we take previous values or extrapolated values for some of
the neighbouring DOFs in the constraint equation (2.77). After some iterations, the full
boundary condition (2.77) is established. This procedure makes it possible to enforce
the perfect-slip boundary condition explicitly. A minor drawback of this scheme is that
the constraint equations have to be reassembled after each solution step of the fluidic
system. Since the assembly of the system does not take very long, compared to solving
it, this does not matter very much. The details of the procedure, which DOFs are taken
to constrain which of their neighbours, are provided in Appendix C.

The geometric system

The tangential components of the free-surface stress balance condition have already been
used in the slip boundary condition (2.69) for the fluidic system. The remaining normal
component, reading

N · δP
δv

∣∣∣∣
A

= −N ·
δF(γ)

δt

∣∣∣∣
A

, (2.78)

will be used as the update equation for the parametrisation variables r and s of the free
surface. To reformulate (2.78) as an update equation, we introduce the residual vector of
the variational formulation of the stress balance (2.44),

L =
δF(γ)

δt

∣∣∣∣
A

+
δP

δv

∣∣∣∣
A

, (2.79)

which shifts the positions of the free surface. In a static system without flow, an update
using the vector −L reduces to a steepest gradient descent on the functional F(γ). In a
driven system, it takes the additional fluidic stress into account.

This is the very point in the algorithm where the reasoning of Section 2.2 about the
different physical meanings of the forces in the free-surface boundary condition becomes
relevant. If the calculation in Section 2.2.4 had provided a combined functional G, then
we could have written L as δG/δv. Since this is not the case, the normal component
of the boundary condition (2.44) must be tested either with δt or with δv. We will use
δt because the most troublesome term in this calculation is the curvature κ, containing
second derivatives. According to equations (2.30) and (2.26), the curvature can then be
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dissolved into two terms, each containing only a first derivative. The weak formulation
of the force vector L in normal direction then reads∫

A

Liδt
i dA =

∫
A

γ tαi δt
i
α dA+

∫
A

σij N
jδti dA

= −δF(γ)[δt] +

∫
A

σij N
jδti dA . (2.80)

Again, the replacement rule (2.6) can be applied to obtain the discretised version of the
Cartesian components of the integral on the left-hand side,

[Lr]d =

∫
A

γ (ex · T) (T ·∇∇∇χd) dA+

∫
A

(ex · σN)χd dA , (2.81 a)

[Ls]d =

∫
A

γ (ey · T) (T ·∇∇∇χd) dA+

∫
A

(ey · σN)χd dA . (2.81 b)

If the ansatz functions φd and χd are chosen to be equal, then these equations become
fully consistent with (2.79). The replacement rule here approximates each Cartesian
component of the surface parametrisation with an ansatz function χd,

ex · δt 7→ χd , e(x)i δt
i
,α 7→ (χd),α = tiα (χd),i , (2.82 a,b)

ey · δt 7→ χd , e(y)i δt
i
,α 7→ (χd),α = tiα (χd),i . (2.82 c,d)

As the parametrisation variations δti are scalars with respect to the surface coordinates,
their derivatives δti,α have been be expressed by the tangential projection of the spatial
gradient of χd in equations (2.82 b,d).

The residual vector L has the dimension of a force. In order to determine the displace-
ment of the node positions caused by this force, we employ a Newton–Raphson method
(Bronstein et al., 1995). The local displacement of the free surface is then determined
from the force components ([Lr]d, [Ls]d) and their derivatives with respect to the paramet-
risation. Thus, in the geometric part of the algorithm we repeatedly solve the following
linear system of equations,

∂[Lr]d
∂re

∂[Lr]d
∂se

∂[Ls]d
∂re

∂[Ls]d
∂se


(old)~re

(new)−~re
(old)

~se
(new)−~se

(old)

 = −τ

[Lr]d

[Ls]d


(old)

, (2.83)

where τ ∈ [0,1] denotes a step-size parameter. In all applications below, we use values
of τ between 0.1 and 1.0. The entries of the matrix can either be calculated as the partial
derivatives of the discretised vector L in (2.81), or equivalently as the discretised ver-
sion of the continuous second variations of the surface free energy F(γ) and the power P ,
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see equations (2.59) and (2.61). In the continuous formulation we have seen in equa-
tion (2.63) that the change of the pressure due to changes of the free surface must be
taken into account. This term is necessary to yield a stable numerical algorithm and
must likewise occur in the discrete formulation.

2.3.2. Similarity of free surfaces and rubber bands

The regularity of the computational mesh is an indispensable requirement for a stable
numerical calculation. Very slim elements or drastic changes in the local density of
elements can affect the properties of the linear systems of equations that are solved by
the computer. In many cases, this results in errors that are amplified from iteration step
to iteration step. In the case of minimising the free surface, the instability becomes
manifest in the shrinking and growing of finite elements. This effect can be observed in
the program surface evolver. The documentation (Brakke, 1992) therefore recommends
to monitor the mesh quality and to re-mesh the surface whenever necessary. Similar
effects were reported by Brinkmann (2005).

A look on equations (2.81) helps to explain the problems. In the numerical implement-
ation, the integrals over the free surface in equation (2.81) are evaluated as separate
integrals over the facets. At a node d, the resulting force ([Lr]d, [Ls]d) is the sum of the
respective contributions from the adjacent sides m,[

L(m)
r

]
d

=

∫
A(m)

γ (ex · T(m)) (T(m) ·∇∇∇χd) dA+

∫
A(m)

(ex · σN(m))χd dA , (2.84 a)

[
L(m)

s

]
d

=

∫
A(m)

γ (ey · T(m)) (T(m) ·∇∇∇χd) dA+

∫
A(m)

(ey · σN(m))χd dA . (2.84 b)

The gradient ∇∇∇χd in the first integrals of equations (2.84) is proportional to the inverse
length of the one-dimensional surface facet m, because the ansatz function χd assumes
values between zero and unity. Consequently, the forces caused by the surface tension
do not scale with the facet size A(m), as is depicted in Figure 2.3. Neither do the changes
of the nodal positions adapt themselves to the size of the participating facet. As long as
the shifts occur only in normal direction, this does not matter. Tangential shifts, however,
soon lead to shrinking and growing surface facets, resulting in an irregular boundary
mesh and an unstable algorithm. The situation is slightly better for two-dimensional
surfaces in three-dimensional space. The forces are then proportional to an effective
diameter of a facet.

Our resolution of the problem is the following. We propose to scale the contributions
from each free-surface facet with the length A(m) of the corresponding facet, divided by
the average length 〈A(m)〉 of all free-surface facets. The force then comprises not only a
normal component, but also a tangential component, as can be seen from Figure 2.4 in
comparison with Figure 2.3. In Section 2.3.1, we have assigned the boundary conditions
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to the two sub-problems in such a way that only the normal component of the stress
balance becomes relevant for the movement of the free surface. We are therefore free to
employ the occurring additional tangential forces for keeping the boundary mesh regular,
as long as we do not modify the forces in normal direction.

For a constant surface tension, the change of the free energy of a single surface facet m
reads δF(m) = γδA(m). Scaling the force on the facet with the proposed factors yields

γ
A(m)

〈A(m)〉
δA(m)[δt] =

γ

2〈A(m)〉
δ
(
A2

(m)

)
[δt] . (2.85)

Here we find that the proposed scaling factors A(m)/〈A(m)〉 modify the variational de-
scription such that a functional consisting of the squares of the facet lengths is minimised.
This functional has some similarity with (and subtle differences from) the functional for
a rubber band, as will be discussed now. A straight piece of rubber with spring constant
γ/〈A(m)〉 exerts the force (2.85), when stretched by the length A(m). A rubber band has
the decisive advantage, compared to a free surface, that it is able to compensate forces
in arbitrary directions, not only in normal direction. The stabilised description (2.85) of
the force of a free surface is therefore able to compensate small tangential components
of the applied fluidic stress, which are due to numerical rounding errors. Additionally,
the tangential components which occur in (2.85) tend to equalise the lengths of adjacent
surface facets. Note, however, that a subtle distinction has to be made between a dis-
cretised rubber band and our stabilised free surface. In continuous notation, the energy
functional of the rubber band is the integral over the square of the Jacobi determinant,
which generally does not equal the square of the length,∫

E

a dν 6=
(∫

E

√
a dν

)2

. (2.86)

In case of a piecewise straight representation of the surface, both are equal. For a discret-
isation with curved element sides they are not. However, as long as we aim at a stable
algorithm for the free surface and not for the rubber band, the precise interpretation of
the tangential components of (2.85) is not important.

L′

L′′

−κN+αT

Figure 2.4. The same discrete approximation for a smooth curve as in Figure 2.3. Here, the pulling forces
L′ and L′′ are scaled to be proportional to the corresponding side length, according to the rubber-band
formulation in equation (2.85). The resulting force contains a tangential component αT which depends
on the length difference of the participating element sides. Its precise magnitude is unspecified.
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2.3. Finite-element discretisation in two dimensions

If all free-surface facets have equal lengthsA(m) = 〈A(m)〉, then the scaling factorsA(m)/
〈A(m)〉 in equation (2.85) have no effect and the behaviour of the free surface is re-
established. This situation corresponds to a converged final state of the algorithm. This
fact is due to the construction of the algorithm in Section 2.3.1, where the flow always
has to satisfy the perfect-slip boundary condition (1.16 b), such that no tangential force
components are applied by the flow. During the run of the algorithm, the deviations of
the facet lengths from their average value provide a good measure for convergence: As
long as the surface is not yet in its solution position, the normal components of the shifts
dominate over the tangential components. When the surface is about to reach its final
position, then the normal components decrease and give way to the tangential compon-
ents to equilibrate the facet lengths. In the numerical examples below, it proved useful to
monitor the statistical spread of the facet lengths as a measure of convergence.

For the Newton iteration we require the second variations of the surface free energy. We
scale them with the same factors as the first variations in equation (2.85),

γ
A(m)

〈A(m)〉
δ2A(m)[δt, δt] =

γ

2〈A(m)〉
δ2
(
A2

(m)

)
[δt, δt]− γ

(
δA(m)[δt]

)2
〈A(m)〉

, (2.87)

finding that the second variations of the stabilised free surface and of the rubber-band
analogue are not equal. This does not matter, as we are interested only in the description
of a free surface.

We conclude that by scaling the force contributions of the individual facets with their
corresponding lengths, we have arrived at a stabilised algorithm for the free surface. All
facet lengths tend to the same average value, providing a perfectly regular boundary
mesh. As soon as all facets arrive at the same length, the behaviour of the free surface
is re-established. The discretised free surface thus adopts the advantageous property of a
rubber band, that it can compensate forces also in tangential direction.

2.3.3. Summary of the algorithm

Here, we provide a short overview of the complete algorithm. The required steps are as
follows:

1. Choose an initial mesh and initial ambient pressure p0.

2. Until convergence repeat the following steps:

a) Smooth the inner mesh if it is too distorted.

b) Repeatedly solve the fluidic system for the pressure p and the velocity
components u and v, until the slip boundary condition is established.

c) Subtract the average from p, thus yielding
∫

V
pdV = 0.
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2. Computing stationary free-surface flows

d) Solve the geometric system for the new boundary. At the same time, search
for the value of p0 that keeps the volume unchanged.

e) Set the mesh boundary nodes to the parametrisation values of the geometric
system.

The fluidic system is assembled according to equations (2.73) and (2.74) with constraint
equations (2.76) and (2.77) that incorporate the proper boundary conditions. Here, we
summarise the terms of the geometric system. Its update equation (2.83) is written as(

Krr Krs

Ksr Kss

)(old)(
~r

~s

)(new)

= −τ

(
Lr

Ls

)(old)

+

(
Krr Krs

Ksr Kss

)(old)(
~r

~s

)(old)

(2.88)

with entries that are assembled per element m,

[
K(m)

rr

]
de

= −
∫

A(m)

χdχe(ex ·∇∇∇p)(ex · N) dA

+

∫
A(m)

χd (∇∇∇χe · T)
{

(ex · σN)(ex · T)− (ex · σT)(ex · N)
}
dA

+
γA(m)

〈A(m)〉

∫
A(m)

(∇∇∇χd · T)(∇∇∇χe · T) dA , (2.89)

[
K(m)

rs

]
de

= −
∫

A(m)

χdχe(ex ·∇∇∇p)(ey · N) dA

+

∫
A(m)

χd (∇∇∇χe · T)
{

(ex · σN)(ey · T)− (ex · σT)(ey · N)
}
dA , (2.90)

[
L(m)

r

]
d

=

∫
A(m)

χd (ex · σN) dA+
γA(m)

〈A(m)〉

∫
A(m)

(∇∇∇χd · T)(ex · T) dA . (2.91)

The remaining entries can be obtained by permutations of x and y together with r and s.
Again, constraints have been used to keep the contact lines pinned, using constraint equa-
tions for a Dirichlet-type boundary condition, comprising only a single DOF with an
inhomogeneity. The first terms in (2.89) and (2.90) stem from the approximation (2.63),
where the gradient of the pressure is taken into account. The next integrals in both
equations stem from the second variation of the power P in (2.61). The last term in
equation (2.89) is the stabilised term standing for the surface tension and the curvature.
It originates from the second variation of the surface free energy F(γ) in (2.59), where
we found it necessary to modify this term in the implementation. The second variation

46



2.3. Finite-element discretisation in two dimensions

comprises a term (NiNja
αβ+tαi t

β
j −t

β
i t

α
j ) that causes severe instabilities in the algorithm

if implemented like this. Instead, we found (gija
αβ) to serve well. This modification ap-

parently has no influence on the accuracy of the free-surface algorithm, as will be shown
in the next section. The terms in (2.91) have been implemented along the description of
the previous sections, including the stabilisation technique.

For implementing these equations, we have used the open-source finite-element library
libmesh5 which allows to change the geometry of finite elements in a user’s routine and
provides a powerful constraint method.

2.3.4. Accuracy tests

The best way to prove the accuracy of a numerical algorithm is to compare the result
with an analytical solution. Unfortunately, there are no known analytical solutions of the
full nonlinear free-surface flow problem in a prescribed non-trivial domain. Already the
linear Stokes equations are difficult to solve analytically, see Appendix A for an example.
We thus have to test the parts of the algorithm individually. In the current section, the
geometric sub-problem is tested. The surface shape in a static setting is calculated in
two analytically solvable cases. The comparison confirms the accuracy of the geometric
part of the problem, namely the curvature approximation. The setup is the following:
A prescribed pressure field determines the free-surface shape. Under this assumption,
the approximation in equation (2.63) becomes exact, so that all possible approximation
errors must be due to the discretisation of the curvature.

Figure 2.5 depicts the simple situation with a homogeneous pressure field which deforms
the boundary into a circular arc with radius R=−1/κ= p0/γ. In dimensionless units,
the surface tension is γ = 1, and the prescribed pressure p0 = 2 produces a circle with
radius R= 1/2 as the exact solution. In Figure 2.5, two different approximations are
presented. The first contains only five second-order finite elements and yields a very
accurate representation of the exact solution. Its relative error can be estimated from the
topmost node which misses its target position by less than 0.4%. The relative error of the
curvature is even smaller, namely less than 8×10−6. The other approximations consists
of 14 first-order elements. Although the number of elements is more than twice the
number in the second-order approximation, the first look on Figure 2.5 reveals that the
first-order approximation is less accurate than the second-order one. The relative error of
the position of the topmost node is approximately 10%. Nevertheless, the first impression
is misleading. The curvature of this approximation is still accurate with only 0.5% error.

In the next accuracy test, depicted in Figure 2.6, the pressure is still prescribed, but it
varies in space. As before, we apply a pressure for which the resulting boundary shape

5available on-line from http://libmesh.sourceforge.net
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Figure 2.5. A prescribed homogeneous pressure p0 = 2 bends the free surface into a half-circle with
radius 1/2. The surface tension is γ = 1. Two different approximations are presented, one with only
five second-order finite elements (upper solid curve), the other with 14 first-order ones (lower solid curve).
The boundary nodes are indicated either by circles, if they are vertices between two elements, or by crosses,
if they are second-order nodes in the middle of a facet. The exact solution is indicated by the dashed half-
circle. The initial geometry was the straight connection between the fixed endpoints. Good convergence
was reached after 100 iterations with a step-size parameter τ = 1. The topmost node of the second-order
approximation misses its target position by a relative error of only 0.4%. The relative error of the overall
curvature is even smaller, namely 8×10−6. From the equally sized free-surface facets, which deviate from
their average value only by a relative error of 1.2×10−6, it can be seen that the stabilisation mechanism
of Section 2.3.2 does not interfere. The relative error of the first-order approximation appears to be 10%.
Its curvature approximation is still accurate with only 0.5% error.
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Figure 2.6. The exact sinusoidal boundary shape y = h(x) = 0.25sin(4πx) with surface tension γ = 1 is
well recovered by 40 second-order elements. The shape is generated by the prescribed pressure (2.92).
As in Figure 2.5, the nodes at the boundary are indicated by circles and crosses. The exact solution
is illustrated by the dashed curve. The initial geometry was the straight connection between the fixed
endpoints of the sinus slope. Good convergence was reached after 60 iterations with a step-size parameter
τ = 1. The nodal positions at the maxima are off by a relative error of 0.6%. The lengths of the element
sides vary only by ±0.007%. This small deviation demonstrates that the mesh regularisation method does
not influence the final behaviour of the free boundary.
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Figure 2.7. An illustration of the approximation technique for the curvature, which we refer to as explicit
reconstruction. In the left panel, two sides of finite elements are drawn. The vertices are indicated by small
circles, the second-order nodes by small crosses. The curvature of a smooth curve is defined as the change
of the normal vector per arc-length of the curve. Here, the curvature at the middle node is approximated
by the difference between the normal vectors at the two adjacent nodes, given in terms of the angle α.
The arc-length between the two points where the normal vectors are taken is approximated by a piece of
a circle with the chord length d equal to the distance of the points, see the right panel. The curvature is
taken to be the inverse radius of this circle.

is known. Figure 2.6a illustrates the approximation of a sinusoidal boundary height
function y=h(x) =α sin(βx) that is caused by the pressure field

p(x, y) = −γκ(x) = γ
αβ2 sin(βx)

[1 + α2β2 cos2(βx)]3/2
. (2.92)

Again, the approximation (2.63) becomes exact, and we expect the same discretisation
errors as in the previous example. The relative error of the curvature is slightly larger than
in the previous example because the parts with the maximal curvature are discretised less
densely. Nevertheless, the error is extremely small and can be calculated from the nodal
position at a maximum, which is off by only 0.6%. The error decreases with the growing
number of approximating elements.

Concerning the discretisation errors of the curvature, the accuracy test in Figure 2.6
covers already the general case. According to the construction of the algorithm, the flow
exerts stress on the boundary only in normal direction. In the algorithm, it makes no
difference whether this stress is of viscous nature or due to a pressure difference.

In more complicated applications of our free-surface algorithm, the solution will not be
known in advance. In order to convince ourselves that the stress-balance boundary condi-
tion is indeed satisfied, we need an alternative method for calculating the approximation
error of the curvature. The idea is to estimate the curvature from the discontinuous
normal vectors of the element shapes. We will refer to this technique as the explicit re-
construction method. At each node, the normal vector of the element side is calculated.
Due to the elements being second-order, this yields a valid normal vector for the nodes
in the middle of the side. At vertices, where two elements meet and where the surface
parametrisation is not smooth, the two normal vectors are averaged. Given these normal
vectors, the curvature at a specific node is then estimated as the curvature of an appropri-
ate circle. This circle is specified by the sector enclosed by the two normal vectors. The
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Figure 2.8. The curvature of the approximations in Figures 2.5 and 2.6, estimated from the change of the
normal vectors of the finite-element sides. Panel (a) compares the estimate of the curvature for the circular
approximations in Figure 2.5 with the analytical solution. The relative errors in the middle are comparable
to the errors, as estimated from the global radius of the approximation. The outliers near the endpoints
of the half circle are artefacts of the reconstruction method. Near the end points the normal vectors are
not reliable. Panel (b) shows the same comparison for the sinusoidal slope from Figure 2.6. The large
errors of approximately 25% at the maxima and minima of the curvature clearly show the limitations of
the reconstruction method. The approximation in Figure 2.6 does not indicate such a large error. Note
that there are no outliers at the contact nodes of the sinus shape. Since the curvature there vanishes, the
reconstructive estimate for the normal vectors becomes reliable.

angle of the sector is the angle between the normal vectors, and its chord length equals
the distance between the neighbour nodes, as illustrated in Figure 2.7. This corresponds
to the change of the normal vector per arc-length of the curve. By construction, the
normal vector of the contact nodes at the ends of the free surface cannot be estimated
correctly. The curvature estimate will therefore be less accurate for the contact nodes
and their neighbour nodes.

In Figure 2.8, the curvature estimates from the explicit reconstruction technique are plot-
ted for the shapes from Figures 2.5 and 2.6. We stress that in this figure two methods
are tested simultaneously. First, the numerical solution of the problem, according to the
algorithm in Section 2.3.3. Second, the explicit reconstruction mechanism which estim-
ates the curvature. Both are subject to approximation errors. We must therefore conclude
that Figure 2.8 shows an upper bound of the error. From panel 2.8a it can be seen that
the second-order approximation of the constant curvature of a circle is extremely good.
Apart from the outliers near the contact nodes, the curvature has a relative error less
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2.3. Finite-element discretisation in two dimensions

than 2.5×10−4. This is not as good as the estimate obtained directly from Figure 2.5,
indicating that the reconstruction technique adds a small error. The curvature errors of
the sinus shape in panel 2.8b are also small; only at the maxima and minima of the curve
they are large. As can be seen from the excellent approximation in Figure 2.6, the large
errors in panel 2.8b are a result of the explicit reconstruction technique.

2.3.5. Stabilisation tests

In the previous section, we found the approximation in Figures 2.5 and 2.6 to consist of
equally sized facets. By construction of the stabilisation mechanism, the surface then
has the properties of a free surface, see Section 2.3.2. In the previous section, it has been
demonstrated that the stabilised algorithm yields excellent results.

With the aid of another numerical example we will further explore the implications of
the stabilising mechanism in the free-surface algorithm of Section 2.3.3. To this end,
we let the algorithm solve a problem which is ill-posed for a free surface: Consider
a one-dimensional surface in two spatial dimensions x and y, which is attached at its
endpoints and which is subject to an externally applied stress. The stress is assumed to
be such that the resulting force on the surface is a constant. The force does not depend
on the position of the surface and points always in one direction, say the negative y-
direction. This scenario is similar to the well-known setup of a flexible rope hanging in
a homogeneous gravitational force field.

Under the specified conditions, a free surface does not possess a stationary shape. Due to
its very nature, a free surface with constant surface tension can only compensate forces
which are normal to the surface. The only curve which is always normal to the applied
homogeneous force field, however, is a straight line. Even in the case that the straight sur-
face is compatible with the boundary conditions, namely the position of the attachment
points, it is not a solution of the problem. Because the force exerted by the surface is
proportional to its curvature, it vanishes for a straight curve and cannot compensate the
applied force.

Because the problem is ill-posed, we expect the free-surface algorithm without the sta-
bilising technique to be unable of providing a meaningful result. Figure 2.9a indeed
shows that this is the case. The boundary mesh, consisting of 50 first-order elements,
becomes degenerate. All boundary nodes, with the exception of the two fixed attach-
ment nodes, tend towards a single position. The movement of the nodes towards each
other is due to the tangential component of the applied force. In the algorithm for the
whole free-surface flow problem, such a tangential component cannot occur because of
the perfect-slip boundary condition (1.16 b).

Since the stabilised free-surface algorithm in Section 2.3.3 contains some elements of
the behaviour of a rubber band, it is able to compensate tangential forces. We therefore
expect this algorithm to yield a stable shape for the boundary. The result can be seen
in Figure 2.9b. The finite elements assume a curve which is hanging similar to a rope

51



2. Computing stationary free-surface flows

(a)

−0.3

−0.2

−0.1

0

yy

0 0.2 0.4 0.6 0.8 1
xx

(b)

−0.3

−0.2

−0.1

0

yy

0 0.2 0.4 0.6 0.8 1
xx

Figure 2.9. The reactions of two different free-surface algorithms on an invalid stress at the surface.
Panel (a) shows the unstabilised result by the algorithm implementing the behaviour of a free surface
directly. Since there is no solution to the problem due to the artificially applied stress being not the stress
of a surrounding flow, this algorithm fails as expected. All mesh nodes meet in one point, except for the two
fixed ones at the attachment points. Panel (b) depicts the final result by the stabilised free-surface algorithm.
Its shape is an artefact due to the stabilisation, reacting on the artificial tangential force component. In both
panels, the initial shape was the straight connection between the attachment points.

in a gravitational field. Note that the shape neither assumes the shape of a true rubber
band, which would hang in the form of a parabola, nor is it comparable to a hanging
rope, which yields a catenary curve. Instead, the shape in Figure 2.9b is caused by the
artificially introduced tangential force components and has no physical meaning.

2.4. Pinned droplets in two dimensions

In this section, we compare experimental results, such as the droplet in Figure 1.2, with
our numerical calculation. In the experiment, the flow inside the droplet is actuated
by surface-acoustic waves due to the acoustic streaming effect. Unfortunately, the very
details of the impact by the SAW on the fluid are not fully understood, as outlined in
Section 1.2 of the Introduction. Therefore, we model the driving by the SAW with the
aid of a body force, which is active in the fluid only. In Section 1.2 we have discussed the
qualitative properties of such a body force, according to Figure 1.3. The force has been
found to be active only in a long narrow region, starting at the entrance point of the SAW,
and to carry the fluid along this channel. Figure 2.10 shows the force field which has
been used in the numerical calculations to drive the flow. The form of the region where
the force is considerably strong can be identified as a channel of approximately 70µm to
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Figure 2.10. The body force that models the effect of the SAW in the droplet given in Figure 2.12. Panel (a)
depicts the non-conservative part that causes the flow; (b) shows the potential of the conservative part that
contributes only to the pressure. The same non-conservative force density has been used in Figure 2.13.

Figure 2.11. Panels (b) and (e) of Figure 1.2, depicted again for comparison with the droplet in Figure 2.12.
The pictures are extracted from a film taken of the experiment. Hence, several overlapping snapshots are
visible. The maximal elongation of the droplet gives an impression of the strongest deformation that occurs
during the movement of this droplet. This shape of the droplet has been taken as the target shape for the
droplet in Figure 2.12: In order to achieve qualitatively similar shapes, we adjusted the magnitudes of the
forces in Figure 2.10 accordingly.
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Figure 2.12. A deformed micro-droplet, sitting on a flat substrate with pinned contact-points. The de-
formation is due to an internal pressure and viscous flow, both caused by the body force illustrated in
Figure 2.10. The material properties are those of water surrounded by air at room temperature. Its two-di-
mensional “volume” is that of the initial half-circle with radius 0.28 mm. Panel (a) illustrates the computa-
tional grid, consisting of second-order elements. The side-lengths of the free-surface facets differ only by
4.5×10−5 %. Panels (b) and (c) depict the flow and the pressure, respectively. Note that the deformation is
predominantly caused by the pressure which corresponds to the case that Ca�Bo≈ 1. Good convergence
was reached after 7 iterations with a step-size parameter τ =0.5.

54



2.4. Pinned droplets in two dimensions

100µm width. Its length is larger than the system size.

The qualitative characterisation of the bulk force, providing the form of its active re-
gion, does not imply whether the force field is dominated by its conservative or by its
non-conservative part. As detailed in Section 1.1.1, these two contributions have very dif-
ferent impacts on the resulting flow. Likewise, the deformation of the free surface can be
due to either the conservative or the non-conservative part of the force. Their importance
relative to the surface tension is expressed by the dimensionless numbers Ca and Bo, see
Section 1.1.3. The two contributions of the bulk force can be adjusted independently in
the numerical calculation, such that the resulting flow and the surface deformation obtain
magnitudes which fit to the experiment in Figure 2.11. By this method, we are able to
improve our understanding of the composition of the body force, and we can demonstrate
that our stabilised algorithm can likewise calculate free-surface deformations which are
mainly caused by a pressure (Ca�Bo), or by viscous forces (Bo�Ca).

We started the calculations with a half-circle of 0.28mm radius. This corresponds to the
size of the droplet that is depicted in Figures 1.2 and 2.11. The material properties are
those of water and air at room temperature, i. e. η= 10−3 kg/ms and γ= 72.8×10−3 N/m.
Figure 2.12 presents the surface shape as well as the flow, which are both caused by the
force field in Figure 2.10. The deformed surface consists of two regions, one with neg-
ative curvature (as the initial half circle) and another one at the right flank of the droplet
with positive curvature. A strongly curved region is found at the upper right part of the
surface, where a large pressure is present. The computational mesh is depicted in Fig-
ure 2.12a, exhibiting that the boundary mesh is extremely regular. All facets have the
same lengths, varying only by 1.5×10−4 %. This guarantees that the behaviour of the
boundary is indeed that of a free surface and is not modified by the automatic regularisa-
tion technique described in Section 2.3.2. The velocity field is depicted in Figure 2.12b,
exhibiting a maximal velocity of approximately 1mm/s. The non-conservative part of
the driving force has been tuned to yield this maximal velocity. The conservative part
of the force, depicted in Figure 2.10b, gives rise to the pressure field in panel 2.12c.
Its magnitude has been adjusted such that the deformation of the droplet in Figure 2.12
looks similar and is as strong as the deformation of the experimentally observed droplet
in Figure 2.11.

Note that the deformation of the free surface in Figure 2.12 can only be caused by the
pressure, and thus by the large conservative contribution of the driving force. The viscous
forces for the observed velocities are far too weak to lead to a substantial deformation of
the free surface. If the conservative part had been omitted, the resulting shape would be
indistinguishable from the initial half circle. Expressed in dimensionless numbers, the
parameters corresponding to the droplet in Figure 2.12 are a capillary number Ca≈ 10−5

and a Bond number Bo≈ 1.

In order to prove that the presented algorithm can likewise produce stable results in the
parameter regime Bo�Ca, we consider a droplet that is deformed only by viscous stress
at the boundary. In Figure 2.13 we have used the same non-conservative force that is visu-
alised in Figure 2.10, but without the conservative part. The pressure is therefore con-
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Figure 2.13. A similar micro-droplet as in Figure 2.12, deformed only by the viscous stress at the boundary.
The flow is driven by the non-conservative force density depicted in Figure 2.10a. The conservative part
of the force vanishes such that the pressure is constant inside the droplet. In order to obtain a comparable
deformation, we have used a 105 times smaller surface tension than that of a water–air interface. This
corresponds to the case Bo�Ca≈ 1. Good convergence was achieved after 30 iterations with τ =0.1.

stant, and Bo = 0. With the same water–air interface tension as in the previous example,
the droplet would hardly be deformed. In order to obtain a comparable deformation as in
the previous case together with Ca≈ 1, we have used an artificial surface tension that is
10−5 times smaller than the actual value for the water droplet. In this example, the mutual
dependence of the interior flow and the surface deformation is much stronger than in the
previous example. The velocity field generally depends stronger on the global shape of
the domain than the pressure does. Therefore, the approximation (2.63) becomes ques-
tionable. It expresses the change of the stress due to changes of the surface, namely
δσij[δt] in terms of the pressure only. As a result, the numerical parameter τ had to be
set to a smaller value than in the previous example, in order to reduce the step-size of the
surface.

Unlike in the accuracy tests of Section 2.3.4, the form of the micro-droplets cannot be
determined analytically. Nevertheless, with the aid of the explicit reconstruction tech-
nique we are able to obtain a reliable estimate for the curvature, see Figures 2.7 and
2.8. This makes it possible to prove that the free-surface boundary conditions are indeed
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Figure 2.14. The stress balance at the free surface is found to be satisfied. Depicted are the tangential
and the normal components of the forces at the surface, together with the reconstruction of the curvature
for the droplets in Figure 2.12 (here, panel a) and Figure 2.13 (panel b). The tangential component of the
normal stress is found to vanish, while its normal component equals the tension force. For the curvature,
the reconstruction technique has been tested in Figure 2.8. The numbering of the free-surface nodes starts
with the left contact point and ends with the right one. As in Figure 2.8, in the proximity of the contact
nodes the reconstruction technique causes errors.

satisfied. Figure 2.14 shows all three terms in the stress balance and compares them.6

For each node, we calculated the integrals of normal and tangential components of the
normal stress, weighted by the corresponding ansatz function of the node. The tangen-
tial component vanishes, as expected. The normal component coincides well with the
tension forces, where the curvature has been estimated with the explicit reconstruction
technique.

Conclusions for the driving by the SAW

The two examples of this section allow an estimate of the capillary and Bond numbers of
the flow in the SAW-driven water droplets. The driving mechanism with a SAW is not yet

6In the literature of free-surface numerics, one rarely finds explicit demonstrations that the stress balance
is indeed satisfied at the free surface. We are convinced that readers urge to see figures like 2.14 in
reviews of free-surface algorithms.
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2. Computing stationary free-surface flows

understood well enough to provide an estimate of the conservative and non-conservative
parts of the resulting body force. However, Figures 2.12 and 2.13 allow the conclusion
that the conservative part of the driving force must be several orders of magnitudes larger
than its non-conservative part. The conservative forces for the droplet in Figure 2.12, de-
rived from the potential of Figure 2.10b, are four to five orders of magnitudes larger than
their non-conservative counterparts in Figure 2.10a. This is consistent with our finding
that the surface tension in Figure 2.13 had to be reduced by five orders of magnitudes to
achieve similar curvatures as in Figure 2.12.

The essence of this argument is not compromised by the fact that our numerical examples
provide only two-dimensional stationary flows, while the flow in the experiment is both
time-dependent and three-dimensional. The curvature in three dimensions usually differs
from the two-dimensional one by a factor of two, due to the curvature radius in the second
direction of the flow. Concerning the time-dependence, we stress that our argument is
based on the stress-balance boundary condition, where no time derivatives enter. It must
hold at any instant of time, for a time-dependent flow as well as for a stationary one.

One may be tempted to deduce the same result from the following dimensional analysis:
The smallest curvature radius in photograph 1.2 of the experimentally observed droplet
is 0.1mm. The flow velocity vanishes somewhere in the middle of the droplet and has a
maximal value of approximately 1mm/s. A rough estimate of the viscous stress as the
maximal velocity divided by the curvature radius leads to a capillary number of Ca≈
10−5. The Bond number must therefore be Bo≈ 1. This is the same order of magnitude
as we have obtained from the arguments based on the two Figures 2.12 and 2.13. Of
course, such a simple dimensional analysis cannot replace the detailed reasoning above.
The fact that it yields the same order of magnitude, however, is another indication that
our conclusion on the conservative and non-conservative parts of the body force by the
SAW is correct.

2.5. Summary

In the present chapter, we have developed a combined differential geometric and varia-
tional description of the stationary flow around a free surface. The variational approach
in Section 2.2 provides both the Stokes equations in the volume and the stress balance
condition at the free surface from minimisations of two functionals. The respective vari-
ational formulations of the equations have been given in equations (2.41)–(2.44).

In Section 2.2.4, we found that a perfectly consistent variational description of the free-
surface flow problem cannot be achieved in the given framework. This has important
implications for the discretisation of the problem, namely that the discretisation order of
the velocity variables and the parametrisation of the free surface should be the same. A
further implication is that not all second variations of the functionals, which are necessary
for the minimisations, cannot be given in explicit forms, and we have to introduce an
approximation instead.
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2.5. Summary

Based on the variational description of Section 2.2, in 2.3 we have provided a numer-
ical algorithm that is capable of calculating the shape of a two-dimensional free surface
deformed by a surrounding stationary viscous flow. This algorithm is designed for the
tension-dominated parameter regime, where capillary and Bond numbers assume values
up to unity, as described in Section 1.1.3 of the Introduction. The deformation of the
free-surface shape thus can be significant, but it does not lead to a rupture of the surface.
In this parameter regime, the property of the forces due to surface tension, being propor-
tional to the curvature of the surface, is the most difficult part to treat numerically. We
have overcome this problem by putting the minimisation aspects of the free energy of the
surface into the focus of the algorithm.

A one-to-one discretisation of the continuous equations describing the behaviour of a
free-surface emerged to be unstable. This problem was encountered also in previously
existing algorithms, leading to shrinking and growing facets at the free-surface part of
the computational mesh. Our solution to the problem is to allow a deviation from the
behaviour of a discretised free surface towards the more stable behaviour of a discretised
rubber band, see Section 2.3.2. The decisive advantage of this method is that this devi-
ation comes into play only when the free surface has not yet assumed its final shape and
as long as the facets on the boundary mesh do not have equal lengths. As the discret-
ised surface relaxes to its target position, its behaviour also relaxes back to that of a free
surface. In the numerical examples of Section 2.3.4, we show that our algorithm yields
excellent approximations of free surfaces.

The parameter regime of the microfluidic flows in question is such that the behaviour of
the free surface is dominated by the surface tension. This parameter regime implies that
the flow inside the droplets is subject to a perfect-slip boundary condition. We propose
to enforce this boundary condition in the algorithm with a constraint method.

As an application of the presented algorithm, we have calculated the deformation of
pinned droplets. This deformation is caused by an internal flow, which is driven by a
bulk force effectively describing the impact of an SAW. We explicitly show that the stress
balance at the free surface does hold, thereby showing that our algorithm yields excellent
results in the whole parameter range, Bo�Ca≈ 1 and Ca�Bo≈ 1. From the numer-
ical solution of the flow inside the droplets and from the magnitudes of their deforma-
tion, a conclusion on the nature of the body force by the SAW can be drawn. This force
must comprise a conservative part which is much stronger than the non-conservative one.
Otherwise, no significant deformations would have been found. The conclusion stems
from two independent observations concerning the two different droplets in Figures 2.12
and 2.13.
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3. Particle accumulation

The transport of a particle in a viscous flow comprises a deterministic and a random
aspect. Generally, the surrounding flow exerts stress on the particle via its boundary. If
the particles are considerably small, additional fluctuations, which are inherent in the
fluidic stress, lead to a noticeable Brownian motion. External forces may also be present.
Generally speaking, in the theoretical description of small particles in a viscous flow,
quite a number of different effects lead to small forces. Some of them annihilate each
other, others sum up to noticeable effects. In the following, we will outline the main
sources of particle transport.

Since we require only Cartesian coordinates in this chapter, we will simplify the notation
and not differentiate between co- and contravariant tensors. Only lower indices will
therefore be used. Still, indices occurring twice in a term are summed over, unless stated
otherwise.

3.1. Transport of an extended particle in a flow

Point-like particles

Particles which are comparable in size and density to the fluid molecules can not be
distinguished from the fluid itself. In the description of the Stokes equations, which
describes the state of the flow by continuous fields, such particles can be considered
as point-particles. They are transported with the very same velocity as the fluid. The
surrounding pressure cannot affect them for the same reasons as it cannot affect the fluid
elements. The pressure decouples from the velocity field, as shown in the formulation of
the Stokes equations in (1.8).

Our aim in this chapter is to describe some mechanisms which allow an accumulation
or a directed transport of particles in a flow. For point-like particles all accumulation
effects must vanish. For small particles we expect the effects to be small as well. In
the following, we will analyse several sources of such accumulation effects and try to
compare them.
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3. Particle accumulation

Extended particles

The motion of an extended particle is governed by the forces and torques that it experi-
ences from the external body force and from the surrounding flow. When we paramet-
erise the position of a particle P by a reference point X, then its equations of motion
read

mV̇i = Fi =

∮
∂P

σijNj dA+

∫
P

fi dV , (3.1)

L̇i = Ti =

∮
∂P

εijk(xj −Xj)σklNl dA(x) +

∫
P

εijk(xj −Xj)fk dV (x) , (3.2)

where m denotes the mass of the particle, V = Ẋ its velocity, and L its angular mo-
mentum with respect to the reference point. The force F and torque T comprise two
contributions, one by the stress of the surrounding flow, which is exerted via the bound-
ary of the particle, and a second contribution by the externally applied body force, acting
on the particle volume.

Unfortunately, the stress σijNj is not known if the particle motion is not known. At
the same time that the particle experiences forces from the surrounding flow, it imposes
time-dependent boundary conditions on this flow. These boundary conditions can be
for example no-slip conditions if the particle surface is sticky. Thus the problem of
the fluid flow and the particle motion cannot be split into independent parts, analogous
to the free-surface problem in the previous chapter where fluid flow and shape of the
free surface could not be treated independently. In order to obtain approximations of
the combined flow and the particle motion, it is convenient to regard the unknown flow
fields as a superposition of the unperturbed flow without the particle and a correction
flow which guarantees the boundary conditions at the surface of the particle. We denote
the unperturbed flow fields with the index (0) and the correction fields with (1),

u(x) = u(0)(x) + u(1)(x) , (3.3)

p(x) = p(0)(x) + p(1)(x) . (3.4)

Of central interest is the influence of the particle size and shape on the correction flow
u(1)(x) and p(1)(x).

The forces on small particles in a fluid with considerable viscosity are found to be dom-
inated by the fluidic stress. While the dependence of the total body force on the particle
radius is cubic, we will find linear and quadratic dependencies for the viscous and pres-
sure forces. In the limit of vanishing particle size, the body forces have no effect. Con-
sequently, in the following we will omit the influence of the body force on the particle P
completely. For the same reason, we will assume that the motion of the particle in the
flow is overdamped (see also Purcell, 1977).
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3.1. Transport of an extended particle in a flow

3.1.1. Zero-order forces

In contrast to a point-particle, an extended particle is able to sense pressure gradients
in the surrounding flow. The pressure component of the resulting force is simply the
integral of the pressure over the oriented surface. For a small sphere with radius R, we
may expand the pressure into a Taylor series, leading to the force

F(0) = −
∮

SR(X)

p(0)N dA = −4π

3
R3∇∇∇p(0)(X)− 4π

30
R5∇∇∇∆p(0)(X) + · · · , (3.5)

where SR(X) is the spherical surface with radius R around the point X in three-dimen-
sional space. The derivatives of p(0) are evaluated at the centre of the sphere. The sign in
equation (3.5) has been chosen such that F(0) denotes the force exerted by the pressure
field on the particle. The normal vector points out of the sphere.

It is likewise possible to carry out the integral of the viscous stress by the zero-order
velocity field over the surface of the particle. This quantity, however, is meaningless,
because this velocity field does not obey the correct boundary conditions. Instead, the
zero- and first-order contributions by the flow velocity have to be calculated together.

3.1.2. First-order forces

In the past, several different approaches have been used to calculate the viscous force on
a small spherical particle. The first approach is due to Stokes, who considered a sphere
moving through an unbounded viscous fluid which rests otherwise. The motion of the
sphere is caused by a time-independent external force. It gives rise to an axisymmetric
correction flow which Stokes calculated analytically with the aid of a special stream func-
tion (for the derivation see Happel and Brenner, 1991, Chapter 4). The linear relations
between the force F on a particle and its velocity Ẋ, and between the torque T and its
angular velocity ϕ̇ are the well-known Stokes’ laws of resistance (Happel and Brenner,
1991),

F(1) = −6πηR Ẋ , (3.6)

T(1) = −8πηR3ϕ̇ . (3.7)

That the surrounding fluid must be at rest, apart from the moving sphere, is a drawback
which has partially been overcome by the methods of Oseen (1913, 1927) and Faxén
(1921). The resulting equations are known as Faxén’s theorems for translational and
rotational motion,

Ẋ = − 1

6πηR
F(1) + v(0)(X) +

1

6
R2∆v(0)(X) , (3.8)

ϕ̇ = − 1

8πηR3
T(1) +

1

2
∇∇∇× v(0)(X) . (3.9)
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3. Particle accumulation

Faxén’s theorems express the forces and torques on the particle, which are due to the
correction field, in terms of the unperturbed flow. An overview of the derivation can be
found in the books by Dhont (1996) and by Pozrikidis (1992). Equations (3.8) and (3.9)
express the motion of the sphere in terms of the velocity field at its centre only. This
is a decisive advantage, since the boundary conditions at the particle surface are already
contained in the equations.

In the following, it will be of importance to know the precise meaning of the “unper-
turbed” velocity field v(0) in Faxén’s theorems. This becomes especially important in
the presence of boundaries which confine the fluid and pose boundary conditions on the
Stokes equations. In the following paragraphs, we will therefore derive equation (3.8) in
a short and elegant way, finding that v(0) is not completely unperturbed.

Faxén’s theorem of translational motion

Two independent velocity fields vi(x) and v̄i(x), each solutions of the homogeneous
Stokes equations with arbitrary boundary conditions, satisfy the well-known reciprocal
identity (Lamb, 1932),

0 =
(
v̄iσij − viσ̄ij

)
,j

. (3.10)

The velocity field vi(x) with the corresponding stress tensor σij(x) is the sought solution
of the Stokes equation in the presence of an immersed spherical particle. The flow de-
noted with the bar is unspecified. As the boundary conditions in (3.10) are arbitrary, we
may replace the latter by the fundamental solution of the Stokes equation,

0 =
∂

∂xj

[
Kik(x− y)σij(x)− vi(x)Tijk(x− y)

]
, (3.11)

as long as we do not touch the poles at x=y. The fundamental solutions for the velocity
and the stress tensor depend only on the difference vector r = x−y and have the form
(see Appendix D),

Kik(r) =
1

8πη

(δik
r

+
rirk

r3

)
, (3.12)

Tijk(r) = − 3

4π

rirjrk

r5
. (3.13)

Equation (3.11) is integrated over the fluid domain Ω, where no external forces are active.
The divergence in equation (3.11) is then cast into an integral over the boundary of Ω.
For this integration we have to distinguish between points y residing outside of Ω and
not on its boundary ∂Ω (that is outside of the closure Ω), those points in the interior Ω̊
and those points on the boundary ∂Ω. For a point y not in Ω, the fundamental solutions
are regular, leading to

0 =

∮
∂Ω

dA(x)Nj(x)
[
Kik(x− y)σij(x)− Tijk(x− y) vi(x)

]
. (3.14)
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3.1. Transport of an extended particle in a flow

∂Ω\SR(0)

SR(0)

N

N0
RΩ

Figure 3.1. The fluid domain Ω and its boundaries, as used for the derivation of Faxén’s theorem of
translational motion in equations (3.14)–(3.29). The spherical hole in Ω is the rigid particle. The normal
vectors are defined to point out of the fluid domain.

If the point y lies inside Ω, however, the integration over the pole of Tijk results in the
velocity at y (see Appendix D and Pozrikidis 1992),

vk(y) =

∮
∂Ω

dA(x)Nj(x)
[
Kik(x− y)σij(x)− Tijk(x− y) vi(x)

]
. (3.15)

The boundary ∂Ω is assumed to consist of two parts. One is the surface of a spherical
particle of radius R, the other is the boundary of the fluid container, which is subject
to externally prescribed boundary conditions. The fluid domain Ω and its boundary are
illustrated in Figure 3.1 to make the orientation of the normal vectors clear. Without loss
of generality, we choose the origin of the coordinate system to be at the centre of the
sphere. By imposing no-slip boundary conditions at the surface of the particle, the fluid
velocity there is given by a rigid motion of the particle,

vi(x) = Vi + εijkωjxk . (3.16)

The vector Vi is the velocity of the particle, and ωi describes its rotation around the origin.
In order to incorporate these boundary conditions, we integrate equation (3.14) over the
particle surface SR(0) and obtain the lengthy equation

0 =

∮
SR(0)

dA(y)

∮
SR(0)

dA(x)Nj(x)
[
Kik(x− y)σij(x)− Tijk(x− y) vi(x)

]
+

∮
SR(0)

dA(y)

∮
∂Ω\SR(0)

dA(x)Nj(x)
[
Kik(x− y)σij(x)− Tijk(x− y) vi(x)

]
. (3.17)

Unfortunately, the integrands become singular where x = y, leading to improper in-
tegrals. We avoid this complication by performing the integral with respect to dA(x)
in (3.17), which corresponds to the integral in (3.14), not over the surface of the particle
but over a slightly extended sphere SR+ε(0) and then take the limit ε→ 0 after both integ-
rations have been performed. This is consistent with the requirement for (3.14) that the
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3. Particle accumulation

point y must be outside of Ω. The integrals over Kik can be simplified with a result that
can be found in the books by Dhont (1996, Appendix A of Chapter 5) and by Pozrikidis
(1992, problem 2.3.9), see also equation (D.11) in Appendix D,∮

SR(0)

Kik(x− y) dA(y) =
2R

3η
δik , (3.18)

where x is a point on the sphere SR(0), and thus x= y. On the outer boundary of the fluid,
∂Ω\SR(0), we have x> y and therefore use the more general result (cf. equation D.11
of Appendix D),∮

SR(0)

Kik(x− y) dA(y) =
R

2η

[
δik

(R
x

+
1

3

R3

x3

)
+
xixk

x2

(R
x
− R3

x3

)]
. (3.19)

This identity can be further simplified by noticing that the right-hand side is given by
the fundamental solution for the velocity and its Laplacian, see equation (D.13) in Ap-
pendix D, ∮

SR(0)

Kik(x− y) dA(y) = 4πR2
(
Kik(x) +

R2

6
∆Kik(x)

)
. (3.20)

A similar relation can be found for the integral of Tijk if x>y, see equations (D.12) and
(D.14) in Appendix D,∮

SR(0)

Tijk(x− y) dA(y)

= −R
4

x4

(
δij
xk

x
+ δik

xj

x
+ δjk

xi

x

)
+
(
5
R4

x4
− 3

R2

x2

)xixjxk

x3
(3.21)

= 4πR2
(
Tijk(x) +

R2

6
∆Tijk(x)

)
. (3.22)

The limiting value for x→ y is given by

Nj(x)

∮
SR(0)

Tijk(x− y) dA(y) = δik , (3.23)

where we have already reduced the tensorial rank by multiplying with the normal vec-
tor Nj(x) occurring in (3.17).

In order to simplify equation (3.17), we first carry out the integrations with respect
to dA(y), making use of the identities (3.18) and (3.23). Then, we perform the limit
ε→ 0 which commutes with the other integration. At this point it is crucial to carry out
the integrals over spheres with different radii. If we had taken the same radius for both
spheres, we would have obtained δik/2 instead of the right-hand side of equation (3.23).
The integral of Tijk over the sphere for all three possibilities x<R, x=R, and x>R is
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3.1. Transport of an extended particle in a flow

provided in equation (D.12) in Appendix D. Making use of the boundary condition (3.16),
the first terms of equation (3.17) can be identified as the force and the velocity of the par-
ticle, respectively. They are given by

lim
ε→0

∮
SR(0)

dA(y)

∮
SR+ε(0)

dA(x)Kik(x− y)σij(x)Nj(x)

=
2R

3η

∮
SR(0)

dA(x)σkj(x)Nj(x) = −2R

3η
F

(1)
k , (3.24)

lim
ε→0

∮
SR(0)

dA(y)

∮
SR+ε(0)

dA(x)Tijk(x− y) vi(x)Nj(x)

=

∮
SR(0)

dA(x)vk(x) = 4πR2Vk . (3.25)

Here, we have used

F
(1)
k = −

∮
SR(0)

dAσkjNj , (3.26)

which is the total force exerted on the particle by the surrounding flow. Note that the
normal vector points into the particle, as is visualised in Figure 3.1.

With the aid of the same helper identities (3.18) and (3.23), we may as well simplify the
remaining two integrals of (3.17). Instead of (3.17), we obtain the more useful relation

0 = −2R

3η
F

(1)
k − 4πR2Vk

+ 4πR2

∮
∂Ω\SR(0)

dA(x)σij(x)Nj(x)
(
Kik +

R2

6
∆Kik

)
(x)

− 4πR2

∮
∂Ω\SR(0)

dA(x) vi(x)Nj(x)
(
Tijk +

R2

6
∆Tijk

)
(x) . (3.27)

A look on the integral representation (3.15) of the velocity field helps to understand the
remaining integrals in (3.27). In both integrals of (3.27) the integral kernels Kik and
Tijk occur together with their Laplacian, scaled with R2/6. Thus, if we define a velocity
field v(0) by a similar integral as in (3.15) but without the boundary of the particle,

v
(0)
k (y) :=

∮
∂Ω\SR(0)

dA(x)Nj(x)
[
Kik(x− y)σij(x)− Tijk(x− y) vi(x)

]
, (3.28)
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3. Particle accumulation

then the two remaining integrals in (3.27) yield the velocity v(0) plus R2/6 times its
Laplacian, both evaluated at the centre of the sphere. Altogether, we obtain for (3.27)

0 = −2R

3η
F

(1)
k − 4πR2Vk + 4πR2

(
v

(0)
k (0) +

R2

6
∆v

(0)
k (0)

)
, (3.29)

which is exactly Faxén’s theorem of translational motion (3.8). This theorem generalises
the result by Stokes, where the flow of the fluid is caused only by the motion of the
sphere. Here, the fluid may perform a motion even in the absence of the particle. This
flow is driven by boundary conditions at the outer boundary ∂Ω\SR(0). From the above
derivation, we now have obtained a better understanding of the “unperturbed” velocity
field v(0) which enters Faxén’s theorems. The definition (3.28) clearly indicates that for
(3.29) to be valid, the “unperturbed” velocity field v(0) must be defined in terms of the
boundary values of the “true” velocity field v(x) and the corresponding stress. Therefore,
v(0) is not precisely the flow velocity which we would find in the complete absence of
the particle. It is the flow without the particle, which produces the very same velocity
and stress at the outer boundary as the flow with the particle does.

Note that the identities (3.20) and (3.22) are due to the spherical shape of the particle.
For a differently shaped particle they do not hold. Faxén’s theorem (3.29) has thus been
found to be exact not only in the limit of vanishing radius but for spheres with arbitrary
radii. Unfortunately, in order to obtain v(0), the whole Stokes equation with proper
boundary conditions also on the particle surface has to be solved. In Section 3.2 below,
we will only need the property of v(0) being a solenoidal vector field. If more details
of the force on the particle are needed, then Faxén’s theorem (3.29) can only serve as
an approximation, with the truly unperturbed flow inserted as v(0). If the particle is far
away from the outer boundary, then the difference between the boundary values of a truly
unperturbed flow and the boundary values of v(0) can indeed be negligibly small. If the
particle approaches the outer boundary, however, the flow near the boundary is too much
influenced by the particle. The particle exerts additional stress on the boundary via the
fluid in between. This hydrodynamic interaction between particle and boundary makes
the description of particles near boundaries extremely difficult (Kim and Karilla, 1991;
Pozrikidis, 1992).

Another requirement of (3.27) is that the flow must be stationary, or as an approximation,
nearly stationary. A truly stationary flow is a very restrictive assumption concerning par-
ticle motion. The Stokes equations are then transformed into the co-moving reference
frame of the particle centre, but in this time-dependent coordinate system the outer bound-
aries of the fluid may not change in time. The whole setup must therefore be invariant
under the particle motion. This is the case for a particle moving along the axis of an in-
finitely long pipe or along the symmetry plane between two infinite parallel walls. These
problems have been analysed analytically already in the original works by Faxén (1921,
1922, 1923, see also Oseen 1927). Numerical calculations of the motion performed by
a sphere between parallel plane walls have been performed by Staben et al. (2003) even
for small distances between sphere and wall. For very slow flows, however, the station-
ary Stokes equations may be satisfied well enough, such that Faxén’s theorem (3.29) is a
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3.1. Transport of an extended particle in a flow

good approximation. Then, the whole motion of the particle is composed of a series of
instantaneous snapshots, each satisfying the stationary equations.

A number of further extensions of Faxén’s theorems have been published (Kim and
Karilla, 1991). Pozrikidis (1989) describes particles and droplets in oscillating viscous
flows, and Shu and Chwang (2001) consider particles which translate through rotating
flows.

3.1.3. Higher-order forces

If several particles are immersed in a flow, they cause a common correction field which
is generally not the superposition of separate correction fields. This poses the main diffi-
culty of describing fluids that are heavily loaded with particles (see for example Dhont,
1996; Kim and Karilla, 1991; Doi and Edwards, 1986). This thesis, however, is con-
cerned only with dilute particle dispersions, where the single-particle correction fields
are already small, such that the hydrodynamic interaction between adjacent particles
does not come into play.

3.1.4. Random forces

At room temperature, a fluid is always subject to thermal fluctuations (Landau and Lif-
schitz, 1966). The stress at the boundary of an immersed particle then comprises a de-
terministic and a fluctuating contribution. For small particles, these random forces can
be of the order of the deterministic forces and lead to a Brownian motion of the particles.
The description of the random motion of immersed particles in a fluid at thermal equilib-
rium has been ascribed to Einstein (1905). A little earlier, Sutherland (1905) published
the same result (cf. also to Hänggi and Marchesoni 2005). Sutherland and Einstein argue
that in a distribution of particles the osmotic pressure is compensated by the sum of the
drag forces. If the result of Stokes (3.6) is used for the latter, this leads to the celebrated
Sutherland–Einstein relation for the diffusion coefficient of the distribution of particles
with radius R at temperature T ,

D =
kBT

6πηR
. (3.30)

The diffusion coefficient is used in the Fokker–Planck equation for the probability distri-
bution ρ(x) of the particle centre,

∂tρ(X, t) = − div
(
d(X)ρ(x, t)

)
+D∆ρ(X, t) , (3.31)

where the deterministic drift velocity of the particle is denoted by d(X). An equivalent
dependence of the diffusion constant on R and T was derived by von Smoluchowski
(1906) using microscopic considerations, different from Sutherland and Einstein. He
arrived at a diffusion constant D which is

√
64/27 times larger than in equation (3.30).
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3. Particle accumulation

The drift velocity depends on the forces which act on the particle. In order to find the
dependence of d(X(t)) on the forces F(t) which have been analysed in the previous
sections, we consider the Langevin equation for a particle of mass m,

mẌ(t) = F(t) +
√

2d ξ(t) , (3.32)

and search for the overdamped limit. The random force ξ(t) is assumed to be white noise,
satisfying 〈

ξi(t)
〉

= 0 , (3.33)〈
ξi(t)ξj(s)

〉
= δijδ(t− s) . (3.34)

The value of the noise strength d can be determined in several ways. One possible line of
argumentation employs the Langevin equation (Kramers, 1940; Risken, 1984) together
with the Sutherland–Einstein relation (3.30). The fluid is assumed to be in thermal equi-
librium, that is without external driving and without any unperturbed flow. In this case,
the force F in (3.32) reduces to the drag force given by the Stokes relation, yielding the
Langevin equation

mẌ(t) = −6πηRẊ(t) +
√

2d ξ(t) , (3.35)

with the long-time expectation values

lim
t→∞

〈
Ẋi(t)

〉
= 0 , (3.36)

lim
t→∞

〈
Ẋi(t)Ẋj(s)

〉
= δij δ(t− s)

d

6πηRm
. (3.37)

The same long-time limit is given at thermal equilibrium by the temperature,〈
vivj

〉
= δij

kBT

m
, (3.38)

if the average flow vanishes (cf. Landau and Lifschitz, 1971, § 114). Equations (3.37)
and (3.38) yield the result

d = 6πηR kBT . (3.39)

This is the diffusion constant of the velocity at thermal equilibrium. We will use the very
same diffusion constant also for the driven case, where the fluid performs a non-vanish-
ing average flow. This approximation is expected to hold for sufficiently small velocity
gradients (see Rubí and Bedeaux, 1988; Miyazaki and Bedeaux, 1995, and references
therein). For small particles which are immersed in water the inertial term on the left-
hand side of the Langevin equation (3.32) is negligible (Purcell, 1977). The particle thus
performs an overdamped motion. In order to obtain the overdamped Langevin equation,
we collect the zero- and first-order forces from equations (3.5) and (3.29) above and
extract the particle velocity. We thus write the force on the particle as

F(t) = 6πηR
[
−Ẋ(t) + d(t)

]
, with (3.40)

d(t) = v(0)
(
X(t)

)
+
R2

6
∆v(0)

(
X(t)

)
− 2R2

9η
∇∇∇p(0)

(
X(t)

)
− 2R4

90η
∇∇∇∆p(0)

(
X(t)

)
+ · · ·

(3.41)
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3.2. Particle accumulation at boundaries

The quantity d(t) is the drift velocity of the particle, which will play a central role in
the following sections. The first line of equation (3.41) corresponds to the first-order
forces by the flow v(0), taken from Faxén’s theorem of translational motion (3.29). The
second line contains the zero-order forces from (3.5), which are caused by the externally
induced pressure field p(0). After setting m to zero, the overdamped dynamics of the
particle reads

Ẋ(t) = d
(
X(t)

)
+
√

2D ξ(t) , (3.42)

which is the Langevin equation equivalent to the Fokker–Planck equation (3.31). In
the following, we will focus on the long-time limit of the particle distribution, which is
governed by the stationary Fokker–Planck equation

0 = − div
(
d ρ
)

+D∆ρ . (3.43)

3.2. Particle accumulation at boundaries

An inhomogeneous distribution of particles, exhibiting regions more densely filled with
particles than other regions, is referred to as an accumulation of particles. The Fokker–
Planck equation (3.43) with an arbitrary drift field d(X) may have such inhomogeneous
solutions in two different cases. We will distinguish the two accumulation mechanisms
by means of the boundaries being involved in the effect or not. The role of the bound-
aries is explained by the following observation: Consider the case of a solenoidal drift
velocity field d(X). Then, the homogeneous particle distribution ρ(X) = const is the
trivial solution of the stationary Fokker–Planck equation (3.43). Whether this solution is
the physically realised particle distribution, depends only on the boundary conditions.

Volume effect

The first mechanism is a pure volume effect, occurring even if the fluid is not enclosed
by boundaries at all. Since boundary conditions do not come into play, the volume effect
depends only on the property of the drift velocity field d(X) being solenoidal or not. This
attribute of the drift field, being solenoidal or not, depends on the shape of the particle.
In the previous section we found that the special case of a spherical particle admits a
solenoidal drift velocity. A particle of complicated shape, however, generally gives rise
to a drift field with non-vanishing divergence. Examples can be found in the literature
(Doi and Makino, 2005a,b; Kim and Karilla, 1991; Doi and Edwards, 1986). Especially
chiral particles experience drift fields which are not solenoidal. As a minimal model for
a chiral particle in two dimensions, a rigid combination of three small spherical particles
of different radii has been used (Kostur, Schindler, Talkner & Hänggi, 2006). If all radii
are different, then the particle is not invariant under reflection and does not coincide
with its chiral partner. Such a chiral particle is extremely sensitive to the surrounding
flow. When immersed in a fluid flowing in an array of small eddies, rotating clockwise
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3. Particle accumulation

and counter-clockwise, its motion exhibits complicated attractors, which depend on the
sense of rotation of the specific eddy. In combination with thermal noise, these attractors
lead to a relative accumulation of chiral particles in the eddies of fitting sense of rotation.

The influence of the shape of a particle on its motion decreases with its size. In the
limit of vanishing size we may thus assume all particles to be spherical and make use of
Faxén’s theorems. The drift velocity d(X) is then given by equation (3.41). The leading-
order term in (3.41) is the first one, the velocity field v(0)(X). Since it is a solenoidal
vector field, we cannot expect a volume effect.

One might object that there are forces on the particle due to the hydrodynamic interac-
tion between particle and wall, which might eventually give rise to an non-trivial particle
distribution. For slowly moving spherical particles, for which equation (3.41) is a good
approximation of the drift velocity, hydrodynamic interactions do not help obtaining a
volume effect. Although we cannot calculate the flow velocity v(0) in equation (3.29) ex-
plicitly, we nevertheless know that it is solenoidal, which is the relevant information here.
As in the previous section, there might be effects due to the hydrodynamic interaction of
a particle with a curved wall or for a particle moving fast. In these cases, equation (3.29)
does not apply.

The next-order terms contributing to d(X) in (3.41) are the ones proportional to R2. The
Laplacian of the velocity field is also solenoidal, not giving rise to any volume effect.
Whether also the pressure terms in (3.41) have vanishing divergence or not, depends on
the divergence of the body force f in the Stokes equation (1.6), giving rise to the pressure:
In a flow driven by a homogeneous force, or in a pressure-driven flow in a long channel,
this divergence is surely zero. In an SAW-driven droplet, however, it is not. The impact
of the SAW on suspended spherical particles will be treated in Section 3.3. In this section,
we focus on boundary effects.

Boundary effect

In case that the drift velocity d(X) is a solenoidal vector field, the trivial particle distribu-
tion ρ(X) = const is a solution of the stationary Fokker-Planck equation – if the boundary
conditions indeed allow this solution. The boundary condition for the particle density in
the fluid is the condition of vanishing normal particle flux,

0 = N · (ρd−D∇∇∇ρ) , (3.44)

which guarantees that the total particle density is conserved.

Additionally, the velocity field obeys the kinematic boundary condition, namely 0 =N ·
v(0). Taking for the drift velocity (3.41) the velocity field v(0), which is the leading-order
term, one always finds the trivial solution ρ(X) = const to obey the no-flux boundary
condition (3.44). Therefore, we may expect neither a volume nor a boundary effect to
leading order.
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d(X)

∂ΩN

∂Ω′

R
N′

T′

Figure 3.2. A spherical particle hits the boundary ∂Ω of the fluid domain, indicated by the thick solid
curve. The region which is accessible for the particle centre is slightly smaller. Its boundary is marked
by the dashed curve. The drift velocity field, which is indicated by the curved arrows, exhibits non-van-
ishing normal components at the boundary ∂Ω′, for example at the point marked by a cross. This normal
component leads to an accumulation or a depletion of particles near the boundary.

A close look on a spherical particle in the vicinity of a boundary reveals that the foregoing
argumentation about the kinematic boundary condition is not fully applicable. Relevant
in Faxén’s theorem (3.29) is the velocity field at the centre of the particle. This centre,
however, never touches the physical boundary but will always stay one radius apart from
it. The no-flux boundary condition (3.44) must therefore be imposed on a slightly shif-
ted boundary ∂Ω′ rather than on the boundary ∂Ω of the fluid. Figure 3.2 sketches the
situation. The effective boundary ∂Ω′, depicted by the dashed curve, is defined to have
always constant distance from the physical boundary ∂Ω. The streamlines of the flow,
and also the fieldlines of the particle drift velocity do not have a constant distance from
the boundary. Thus, none of the fieldlines coincides with the effective boundary, and
some of them must cross the boundary ∂Ω′ of the region which is accessible to the par-
ticle centres. One of these crossing points is marked in Figure 3.2. The drift velocity
there has a non-vanishing normal component, thus preventing the trivial particle density
from satisfying the boundary condition (3.44). At the marked spot the normal component
of d(X) is positive, which leads to a deposition of particles at the boundary. A negative
normal component would describe a particle transport away from the boundary. Both
signs will be found in the numerical simulations below. Since the boundaries have dis-
tance R, we expect the accumulation effect due to this hard-sphere collision with the
boundary wall to scale linearly with the particle radius.

We cannot tell much about the normal projection of the next-order terms in (3.41). Gen-
erally, these terms may also give rise to a boundary effect. The magnitude of this effect,
however, is small. It scales quadratically with the particle radiusR and is therefore expec-
ted to be smaller than the hard-sphere boundary effect described above. Furthermore, for
pressure-driven flows in long channels, a look on Figure 3.3d below reveals the pressure
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gradient at the boundary to be oriented in tangential rather than in normal direction.

3.2.1. Channels with no-slip boundaries

In the previous paragraphs, we found that in pressure-driven flows in long channels the
volume effect of the particle accumulation cannot occur, if spherical particles are con-
sidered. We now analyse the boundary effects occurring in such systems. The discussion
is restricted to the effect which we expect to be dominant for very small particles. This is
the effect growing linearly with the particle radius, namely the collision effect depicted
in Figure 3.2. For this effect it is sufficient to take the leading-order term in the drift
velocity (3.41) and to use it in the stationary Fokker–Planck equation in the domain Ω′

which is accessible to the particle centres,

0 = −v(0) ·∇∇∇ρ+D∆ρ , (3.45)

with the boundary condition on ∂Ω′,

0 = N′ · (ρv(0) −D∇∇∇ρ) . (3.46)

The normal vector N′ is the normal vector of the effective boundary ∂Ω′.

Equations (3.45) and (3.46) are used to model the particle accumulation in the eight-
shaped setup of Section 1.3.2, see Figure 1.5. The original setup comprises a three-
dimensional water channel, bounded partly by a rigid flat substrate, partly by a curved
free surface. We here employ a two-dimensional model flow, bounded by straight and
curved no-slip and perfect-slip boundaries. The two-dimensional channel is periodically
continued, thus modelling only the interesting middle part of the eight-shape, indicated
by the circle in Figure 1.5.

The model flow is the solution of the stationary Stokes equations (1.4) and (1.6) together
with the boundary conditions (1.9), (1.10), and (1.16). Since the SAWs that drive the
flow are far away from the middle part of the eight-shape, the precise type of driving
in the model flow does not matter. We employ a pressure gradient, which equivalently
corresponds to a constant body force. Note that we do not solve the full free-surface
problem here, and the surface geometry is not considered to be part of the problem. This
allows to prescribe a curved slip-boundary, which makes the accumulation effects in the
two-dimensional model flow more realistic. Since the channel is infinitely long and the
flow is periodic, a truly free surface would equilibrate at a straight shape. As indicated
in Section 1.3, we need some kind of asymmetry in the geometry of the channel in order
to obtain a non-vanishing effect. This has been observed in the drift ratchet, and it can
in our case be seen from Figure 3.2. The boundary accumulation effect in long channels
takes place only if curved boundaries are involved.

Figure 3.3 shows the two-dimensional flows in differently shaped channels. Each chan-
nel is periodic in the direction of its axis. On one side it is bounded by a straight wall,
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Figure 3.3. The flow in channels with no-slip boundary conditions. Each channel is periodically continued
at its left and right boundaries, resulting in an infinitely long channel. Illustrated are three unit cells with
different asymmetry parameters of the curved boundary. They are a = 0, 0.8, and −0.8 for (a), (b), and
(c) in this order. The average flow direction is from left to right in all three panels. The flow is driven by
a pressure difference of ∆p = 1Pa along the length L = 10−4 m of a unit cell. The black lines in (a)–(c)
indicate the streamlines which separate the two flow chambers of the microfluidic device of Figure 1.5.
Here, they have been chosen in the middle of the flow, where the water throughputs above and below the
separating streamline are equal. Panel (d) shows the pressure field, without the applied linear pressure
gradient driving the flow. The black lines in (d) are level lines of the pressure. At the boundary, they tend
to end in normal direction rather than in tangential direction.
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Figure 3.4. Typical densities of particle centres in the flows depicted in Figure 3.3. At the wall, the thin
black zone with zero density indicates the area which the particle centres cannot enter. It is one particle
radius wide, which here has been set to R = 10−2 L. The thin black lines are level lines of the particle
density, which has been normalised to an average value of unity. For the considered average flow direction
from left to right, we find that the region in front of the bottleneck is populated by more particles than
the region behind. The densities have been calculated using a ratio of pressure difference and temperature
∆p/T =3.3×10−6 Pa/K which corresponds to a Péclet number of Pe≈ 16.

Figure 3.5. A detail of the computational mesh at the boundary. The outermost layer of finite elements
represents the forbidden zone for the particle centres. The element sides of this layer constitute the two
boundaries ∂Ω and ∂Ω′, see also Figure 3.2.
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while the other wall is curved. The flows have been calculated as the numerical solution
of the Stokes equations with periodic boundary conditions relating the in- and outflow at
the left and at the right sides of a unit cell. The Stokes equations and the boundary con-
ditions have been implemented according to the algorithm in Chapter 2 and Appendix C.
The curved upper boundaries of the channels are given by the function g, which is defined
by the relation

g(z) = sin
(
2πz − a g(z)

)
. (3.47)

The parameter a causes the asymmetry of the shape. A value a= 0 corresponds to the
symmetric sinusoidal shape in Figure 3.3a, while shapes with a > 0 close steeper than
they broaden, when seen from left to right, compare Figure 3.3b. The function g can
be evaluated iteratively, starting with sin(2πz). We found the iteration to converge for
asymmetry parameters a∈ [−1,1].

As mentioned above in Section 1.3, see Figure 1.4, the difference of the current setup
to the drift ratchet is that here the flow is unidirectional. The asymmetry of the chan-
nel, having one straight and one curved boundary, may cause a particle accumulation
perpendicular to the main flow direction. An individual trajectory of a particle essen-
tially follows a streamline of the velocity v(0)(X). Small deviations from the streamlines
are caused by the random contributions. The particle accumulation that we refer to is a
highly dynamic process. The conventional understanding of an accumulation is rather
such that particles move towards a certain region and stay there. In contrast, in the cur-
rent accumulation mechanism, different streamlines of the flow are populated differently
by the particles, which remain in permanent motion. Only if the flow is stopped at some
time, which can happen in such small systems almost without inertial relaxation, then the
resulting particle distribution is similar to the usual understanding of an accumulation.

Figure 3.4 presents the numerically obtained solutions of the stationary Fokker–Planck
equation (3.45) with boundary condition (3.46) for the flows in Figure 3.3 with no-slip
boundaries. The global forms of the stationary distributions in Figure 3.4 are quite intuit-
ive. Left of the bottleneck in the channel, we find an accumulation zone of the particles.
Since the main flow direction is from left to right, the flow velocity concentrates particles
just in front of the bottleneck. This result can be understood with a look on Figure 3.2.
At the bottleneck, the density of streamlines is higher than in the wide part of the channel.
Their form is governed by the Stokes equation, while the form of the effective boundary
∂Ω′ is governed only by the geometry of the physical boundary. Thus, left and right
of the bottleneck we find regions where many streamlines cross the effective boundary.
There, the drift contains a non-vanishing component in normal direction, N′ ·v(0) 6= 0. A
particle at such a point is transported only by the tangential component of v(0), and is
thus slowed down. The normal component is compensated by the wall. This normal com-
ponent results in the dynamic accumulation that we see in Figure 3.4. Correspondingly,
a depletion zone occurs behind the bottleneck.

The accumulation effect is caused by the fact that the particle centres cannot enter the
region near the boundary of the fluid, as explained above and illustrated in Figure 3.2. We
use particle radii which are at least two orders of magnitude smaller than the system size.
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The computational mesh has to provide both boundaries, ∂Ω and ∂Ω′. Figure 3.5 shows
a detail of the mesh near a boundary, where the zone of thickness R, which the particle
centres cannot enter, is given by one layer of finite elements. The boundary condition for
the Stokes equation must be satisfied at the outer boundary, while the no-flux boundary
condition (3.44) holds at the effective boundary consisting of finite-element boundaries
of the second layer. The resulting forbidden zone for the particle centres can be identified
in Figure 3.4 as the zone near the boundary, where the particle density is zero.

The parameter regime of equation (3.45) is characterised by the dimensionless Péclet
number, which expresses the ratio of advective to diffusive transport. Since the flow
in the channels is pressure-driven, the typical velocity scale is proportional to the ap-
plied pressure difference. We set the scale of the velocity to the maximal velocity in a
Poiseuille flow in a straight channel of length L and width W ,

v̄ =
W 2 ∆p

4ηL
, (3.48)

which reproduces the correct order of magnitude when the narrowest channel widthW ≈
L/8 is used, see Figure 3.3. The Péclet number then reads

Pe =
x̄v̄

D
=

3πL2

128 kB
R

∆p

T
. (3.49)

For the stationary particle distribution, there is no difference between a weakly driven
system and one at a high temperature, as long as the ratio ∆p/T is the same. In the
numerical calculations for several different temperatures, we therefore used the same
numerically obtained velocity field, driven by a unit pressure difference ∆p= 1Pa along
the channel length L= 10−4 m. The Péclet number used in Figure 3.4 is Pe≈ 16. This
corresponds to a slightly advection-dominated transport of particles. For smaller Péclet
numbers, the diffusion becomes dominant, resulting in a smoother particle distribution
than in Figure 3.4. For larger Péclet numbers, the maxima of the distribution near the
boundaries become more pronounced.

The temperature values used in the following numerical calculations (from 105 K to 3×
108 K at the pressure difference ∆p= 1Pa) correspond to pressure differences between
10−6 Pa and 3×10−3 Pa at room temperature. Together with the particle radiusR ranging
from 10−3L to 10−2L, we obtain Péclet numbers in the range

Pe ∈ (10−1, 102) . (3.50)

Hence, the parameter regime covers all parameters from diffusion-dominated to advec-
tion-dominated flows.

The behaviour of the stationary particle distributions in the direction perpendicular to the
main flow direction is not obvious and cannot be guessed from a glance at Figure 3.4. In
the figure, we find accumulation and depletion regions on both sides of the separating
streamline. We would like to know in which basin of the eight-shaped flow chamber
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Figure 3.6. The relative accumulation effect for the flows in Figure 3.3 with no-slip boundary conditions.
Values smaller than unity correspond to the situation where more particles are in the basin below the sep-
arating streamline, near the straight boundary. Panel (a) exhibits that this occurs for most flow parameters.
Only the boundary shape in Figure 3.3b with asymmetry parameter a = 0.8 allows an accumulation at the
curved boundary as well as at the straight one. In panel (a) the temperature is varied for a fixed particle
radius of R = 10−2 L. In panels (b) and (c) the particle radius is varied for two selected temperatures
∆p/T = 3.3×10−7 and 3.3×10−8. The interesting behaviour of the curve for a = 0.8 in panel (a), yield-
ing values larger than unity, persists also for all radii in panel (c). In all three panels, the numerical results
have been calculated also for the inverted flow with inverted pressure differences. The resulting values are
found to be identical to the original values. They are depicted by small circles, connected by dashed lines.
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of Figure 1.5 there are more particles of a specified radius. To find an answer to this
question, we integrate the particle density in the two regions Ω′

+ and Ω′
−, representing

the accessible regions above and below the separating streamline. The two probabilities

V+ =

∫
Ω′

+

ρ dV and V− =

∫
Ω′
−

ρ dV (3.51 a,b)

of finding a particle above (+) or below (−) the separating streamline can be used to
provide a measure for the relative accumulation of particles in one of the basins. Of
course, the position of the separating streamline has to be taken into account as well. We
use the quantity

V+

Ω′
+

/ V−
Ω′
−

(3.52)

as a measure for the relative accumulation in the upper basin, which is the one with the
curved boundary. The denominators Ω′

+ and Ω′
− stand for the volumes of the regions

above and below the separating streamline.

Figure 3.6 displays the resulting relative accumulation for the flows in Figure 3.3 with
two no-slip boundaries. The upper panel gives the ratio (3.52) as a function of the in-
verse temperature. The first observation is that the effect vanishes for vanishing driving
– or equivalently, for infinite temperature. For most parameters, the result is smaller
than unity. This corresponds to an accumulation of particles on the side of the straight
wall. This appears as a general tendency, which was found also for different shapes and
different boundary conditions, see the results below in Section 3.2.2. The relative accu-
mulation effect is small, up to maximally one percent for the smallest temperature we
have used in the calculation. As expected, it vanishes for very small values of ∆p/T . In
order to convince ourselves that this small effect is not an artefact of the numerical cal-
culation, also the flows in the inverted channels with inverted pressure differences have
been used. The results are also depicted in Figure 3.6. The differences are found to be
smaller than the linewidth.

For two temperature values, also the particle radius has been varied. Panels (b) and (c)
of Figure 3.6 depict the ratio (3.52) as a function of the radius. Again, the effect vanishes
with vanishing radius. This is the expected behaviour, because a point-particle can come
arbitrarily close to the physical boundary.

An interesting aspect of the accumulation results in Figure 3.6 is the fact that the two
doubly asymmetric channels (with a= 0.8 and a=−0.8) behave differently. It seems to
be the general tendency that the channel which suddenly widens and slowly narrows (a=
−0.8) yields better accumulations than the suddenly narrowing one. The channel with
the sinusoidal shape (a= 0) yields accumulation results somewhere in between.

A remarkable property of the accumulation mechanism can be observed at the flow in the
shape with asymmetry parameter a= 0.8, where the flow from left to right experiences a
slowly opening channel which suddenly narrows. Here, we find values of the ratio (3.52)
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Figure 3.7. The flow in partially open channels. In (a) we have used the perfect-slip boundary condition
at the curved boundary together with a no-slip condition at the straight one. In (b) the boundary conditions
are interchanged. The velocity magnitude is maximal at the slip boundary, as expected for free-surface
flows.

not only smaller than unity, but also larger than unity. Particles in this parameter regime
are transported rather towards the curved boundary than towards the straight one. The
occurrence of both values corresponds to an inversion of the transport direction. Panel (c)
confirms that the values larger than unity, which we found in panel (a), persist also for
several smaller radii. Note that for each radius, a different numerical mesh had to be
used, displaying the correct boundary ∂Ω′. An inversion of the accumulation direction
is exactly what is needed for sorting particles, similar to the current inversion in the drift
ratchet (Kettner et al., 2000). However, the inversion found here is not readily usable
for sorting particles, because the inversion takes place only while varying the parameter
∆p/T and not the radius R. Moreover, the effect is far too small to be of experimental
relevance. Still, the occurrence of accumulation inversion is an interesting effect.

3.2.2. Comparison of slip and no-slip boundaries

In the previous section, we found that the eight-shaped microfluidic device in Figure 1.5
indeed accumulates particles in one of its loops. The calculations have been performed
for a model flow with no-slip boundary conditions. We now consider free-surface flows
as well. In the above paragraphs, we found that the accumulation effect strongly depends
on the shapes of the boundaries. By construction of the boundary effect, it is also clear
that the accumulation must vanish if two parallel straight boundaries are used.

Curved boundaries in the tree-dimensional flows within the eight-shaped geometry of
Figure 1.5 can be enforced by prescribing suitable wetting patterns on the underlying sub-
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Figure 3.8. Particle distributions in the flows of Figure 3.7. The particle radius and the temperature are
the same as in Figure 3.4. The maximum and minimum of the distribution are more pronounced than in
Figure 3.4. This is an immediate result of the perfect-slip boundary conditions, used here instead of the
no-slip boundary conditions as used in Figure 3.4. The large velocities at the boundary also contain larger
normal components, which cause more pronounced maxima and minima of the particle distribution. The
curved slip-boundary in panel (a) is even more effective in causing an inhomogeneous distribution than the
straight one in panel (b). This can be understood in terms of Figure 3.2: The whole accumulation effect
is caused by the streamlines crossing the boundary ∂Ω′. At curved surface, there seem to be more such
crossings.

strate. Curved boundaries of the wetting patterns generally give rise to likewise curved
free boundaries. We would like to model such a flow with our two-dimensional setup and
therefore maintain a prescribed curved boundary also for the model of the free surface.
As mentioned in the previous section, a truly free surface would be straight due to our
special situation of a periodically continued channel.

The flows resulting from the same pressure difference and for the same boundary shape as
in Figure 3.3 but with different boundary conditions are depicted in Figure 3.7. The flow
in panel (a) is subject to a no-slip boundary condition at the straight wall and to a perfect-
slip condition at the curved boundary. These boundary conditions are interchanged in
panel (b). As in the flows with truly free surfaces in Chapter 2, Figures 2.12 and 2.13,
the maximal velocity is found at the surface.

The use of free surfaces instead of closed geometries with rigid walls gives rise to larger
accumulation effects: Since the velocities at the boundaries are generally much higher
at free surfaces than at no-slip walls, and since the accumulation in this section is due
to a boundary effect, also the normal components of the velocity that enter the boundary
condition (3.46) cause larger effects. In this sense, the accumulation at a free surface
can make use of the maximal velocity that is obtainable in the system. How much larger
the effects are, can be revealed from Figure 3.8. Compare the maximum values of the
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Figure 3.9. The relative accumulation effect for flows with a curved no-slip boundary and a straight slip
boundary, see Figures 3.7b and 3.8b. The magnitude of the accumulation effect is similar as in Figure 3.6.
The accumulation direction, however, exhibits drastic changes. In panel (a) the particle radius is fixed to the
value R = 10−2 L and only the temperature is varied. Panels (b) and (c) show the particle accumulation
as a function of the radius of the particles, for two fixed ratios of pressure difference and temperature
∆p/T =3.3×10−7 and 3.3×10−8, respectively. The sign of the accumulation direction changes not only
as a function of the driving in panel (a), but also as a function of the radius in panel (b).
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Figure 3.10. The relative accumulation effect flows where the curved boundary carries a perfect-slip
boundary condition, while the straight one is sticky, see Figures 3.7a and 3.8a. The magnitude of the
accumulation effect is larger than in Figures 3.6 and 3.9. Again, the particle radius is R = 10−2 L, with
variable temperature in panel (a). In panels (b) and (c) the pressure difference and temperature are ∆p/T =
3.3×10−7 and 3.3×10−8, respectively, and the radius is varied.
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Figure 3.11. The accumulation in a droplet. The boundary comprises a no-slip condition at the flat
substrate and a perfect-slip boundary condition at the curved free surface. The typical velocity scale and
the temperature are the same as in the channels of Figure 3.4. The two contact-points on the horizontal axis
are 10−4 m apart. Hence, the Péclet number is Pe≈ 16, the same value as for the channels in Figure 3.4.

particle densities with that of Figure 3.4b. The maxima and minima here are five to ten
times more pronounced.

Larger accumulation effects than in their no-slip equivalent can also be seen in Figures
3.9 and 3.10. In these two figures, the accumulation of particles below the separating
streamline, relative to the particles above the separating streamline, is shown for the
same parameters as in Figure 3.6. Again, the accumulation depends on the asymmetry
parameter a. In contrast to Figure 3.6, where the sinusoidal shape with a= 0 mostly
yields values between the other two shapes, we here find a more complicated depend-
ence on a. In panel 3.9a, the line with a= 0 lies above the other two for larger values of
∆p/T and between them for smaller values. In panel 3.9b there seems to be no difference
between the shapes with a= 0 and a=−0.8. This complicated dependence of the accu-
mulation on the shape parameter a makes a simple explanation of the effect impossible.
As in Figure 3.6, the numerical findings have been checked by inverting both the channel
geometry and the flow direction, proving that the numerical error is negligible compared
to the accumulation effect.

Figures 3.9a and 3.10a exhibit a similar accumulation inversion as has been found in Fig-
ure 3.6a, where only no-slip boundaries were used. There, we did not find an inversion
while varying the radius of the particle. Here, in Figures 3.9b and 3.10c, and probably
also in 3.9c, an accumulation inversion takes place also when the radius is varied. This
is an immediate result of the employment of slip boundaries instead of no-slip ones.

The fact that the accumulation is much larger at a free surface than at no-slip walls can
be understood more readily for a confined geometry than for the infinitely long chan-
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3. Particle accumulation

nels. Consider a droplet, driven by similar forces as the droplets in Figures 2.12 and
2.13 in Chapter 2. Here, we are only interested in the flow and thus solve the Stokes
equations in a given circular shape, as depicted in Figure 3.11. Note that the streamlines
in panel 3.11a behave differently at the curved free surface and at the wall. The distance
between adjacent streamlines is larger in the vicinity of the rigid substrate than far from
it. Near the free surface, this distance remains the same. That the distances between ad-
jacent streamlines behave differently in the two cases is a geometric way of saying that
the boundary conditions are different. As a result, the centre of rotation resides nearer to
the free surface than to the substrate, with the implication that the streamlines are more
dense at the free surface. Consequently, at this surface, there are more streamlines cross-
ing the effective boundary ∂Ω′ at a higher velocity, compared to the no-slip substrate.
This geometric picture explains the accumulation pattern in panel 3.11b, which exhibits
an accumulation predominantly at the free surface and not at the substrate. The region
where the free surface can accumulate particles is in the upper left part of the boundary.
The region of a possible accumulation by the substrate is at its lower right part.

Note that for Figure 3.11 the argumentation with a forbidden zone of width R has been
equally used for the rigid wall and for the free surface. Strictly speaking, the free surface
could behave differently in this respect, allowing an effective width smaller than R, if
the particles were allowed to leave the fluid partly, or to deform the surface locally. The
currently used widthR can be assumed for particles that try not to leave the fluid, namely
strongly wetting particles.

3.3. Particle accumulation in SAW-driven eddies

After having analysed the boundary accumulation effects in the previous section, we now
turn to a volume accumulation in the eight-shaped channel geometry. A volume effect
can occur only in the vicinity of the point where the SAW enters the fluid, because this is
the only region where sensible body forces are found. We thus focus on the two corners
of the eight-shape of Figure 1.5, where the SAWs are located. In each of these corners,
the main flow along the channel is generated. Additionally, as the body force is quite
strong there, the flow exhibits two eddies (Frommelt and Wixforth, 2006). Rotating in
such an eddy appears to be preferable to the fluid compared to the long route around a
loop. The flow pattern in such a corner is visualised in Figures 3.12 and 3.13.

The main conclusion of Chapter 2 concerning particle transport is that there must be
a dominant pressure field active in the region where the SAW enters the fluid. For the
observed velocities, we found that only a strong pressure contribution is able to deform
the free surface substantially. The gradient of this pressure acts as a force on a particle,
according to equation (3.5). We remind that this is a zero-order force, thus independent
of the correction flows caused by the particle itself. The magnitude of the pressure force
depends on the properties of the fluid, on the driving by the SAW, and on the particle
radius. In Chapter 2, we found the pressure forces to be much larger than the viscous
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3.3. Particle accumulation in SAW-driven eddies

forces at the free surface. The body force caused by the SAW must be dominated by
the conservative contribution. This has some consequences for the terms adding up to
the drift velocity d(X) in equation (3.41). When comparing the two terms proportional
to R2, the Laplacian of the velocity is found to be negligible, only the pressure gradient
remains. Furthermore, the terms proportional to R4 and higher-order terms vanish since
the particle is smaller than the typical length on which the pressure changes. As a result,
only the first term in equation (3.41), namely the velocity of the unperturbed flow, and
the third one, the unperturbed pressure gradient remain as relevant in the drift velocity of
the particle.

As we found in Chapter 2 that the pressure gradients can be quite large in SAW-driven
systems, we put forward the hypothesis that the pressure field plays an important role
in the accumulation process of particles. For estimating the relative importance of the
two remaining forces on the particle, we take the pressure inside of the droplet of Fig-
ure 2.12. The bar-like form of the region where the pressure is large, can be seen directly
in Figure 2.12b. It acts as a barrier for particles trying to follow the streamlines of the
flow. We therefore consider a particle trajectory at the highest available velocity, which
tries to cross this barrier in perpendicular direction and which is stopped by the pressure
forces at some point. The condition for the viscous drag forces and the pressure gradient
to compensate each other at this point is

6πηRv(0)(X) =
4π

3
R3∇∇∇p(0)(X) . (3.53)

When the magnitudes of velocity and pressure are taken from Figure 2.12, then a critical
radius is obtained as

Rcrit =

√
9η ‖v(0)‖
2 ‖∇∇∇p(0)‖

≈ 0.5µm . (3.54)

Particles with a smaller radius than Rcrit have a better chance to pass the barrier together
with the fluid, while larger particles are exposed to a larger pressure difference and are
kept back. We emphasise that the pressure does not influence the carrier flow at all. The
ratio of the viscous drag and the pressure force depends quadratically on the radius of
the particle. For a sphere with 5µm radius, this ratio is already 10−2. The viscous drag
on such a particle may thus be neglected in the vicinity of the pressure barrier.

The effect by the pressure fields from the SAW might be an explanation for an interest-
ing phenomenon in the experiment (Frommelt and Wixforth, 2006). When particles are
immersed in the water of the eight-shaped channel, then, under certain circumstances,
they are found to be collected in one of the flow eddies after some time. Figure 3.12
depicts such an accumulation of micro-beads of 4.6µm radius, which were well distrib-
uted before the flow has set in. While the particles perform their motion according to the
viscous drag and to the pressure forces, they are found to be absorbed into one of these
eddies, leaving the remaining fluid empty. The experimental photographs in Figure 3.12
illustrate this process. It is the upstream eddy, sitting in front of the pressure barrier,
which collects the vast majority of particles. This leads to the proposed hypothesis that

87



3. Particle accumulation

(a) (b) (c)

Figure 3.12. The particle collection mechanism in two eddies generated by a SAW: The photographs show
one of the bended corners of the eight-shaped water channel of Figure 1.5. The main water flow is from
the left to the bottom side of the photographs. The SAW runs into the bend from the top. The SAW causes
not only the main flow but also the two eddies, a round one in front of the bend and a lengthy one behind.
Immersed in the flow are beads of 4.6µm radius. Initially, the particles are well distributed in the fluid.
Soon, they are dragged into the round eddy in front of the bend. In photograph (a) the two eddies can be
recognised in an intermediate state, when the particles are still distributed a bit. Photograph (b) shows a
later state, where nearly all particles are collected in the eddy, and (c) shows the final state. (Pictures from
T. Frommelt)

the SAW acts as a pressure cap for the upstream eddy. When a particle is about to leave
this eddy in order to follow the main flow along the loop of the eight-shape, then it must
pass the region with high pressure. That the pressure barrier is located exactly where the
particles try to leave the eddy is an presumption on the form of the driving force caused
by the SAW. It appears plausible since both the non-conservative part, which generates
the flow, and the conservative part, which is responsible for the pressure cap, have the
same origin. For a validation of this assumption, however, both the details of the acous-
tic streaming mechanism and of the resulting three-dimensional flow would be required,
which are inaccessible at the moment.

The fact that still some of the particles can be found in the downstream eddy indicates
that not only the pressure-driven accumulation process is active here. The flow eddies
themselves are somehow able to collect particles in their centre. This appears to be a
much smaller effect than the pressure barrier by the SAW, it nevertheless helps the latter
to collect the particles which cannot pass the barrier into the centre of the upstream eddy.

Figure 3.13 shows the same flow pattern for much smaller particles. Micro-beads of
0.36µm radius have been used here, which is comparable to the critical radius Rcrit.
The viscous drag and the pressure forces are of the same order of magnitude, and the
pressure field can only act as a very weak barrier. This is corroborated by the experiment.
Generally, it appears to be much more difficult to obtain an accumulation of these smaller
particles, requiring much stronger driving. Additionally, the accumulation is not reliable
any more, depending not only on the existence of the eddy but on details of its shape and
the precise position of the boundaries and the SAW. Figure 3.13 shows two situations

88



3.3. Particle accumulation in SAW-driven eddies

(a) (b)

(c) (d)

Figure 3.13. The particle collection mechanism, similar to Figure 3.12. The beads have a radius of
0.36µm, which is comparable to the critical radius from equation (3.54). These smaller particles cannot
be accumulated into one eddy as easily as the larger ones in Figure 3.12. In panel (b), which has been
started with the situation in (a), no clear accumulation takes place. The flow of panel (c), however, leads to
the accumulation in (d). Both situations required a much stronger driving than for the large particles and
took more time. The driving had to be so strong that the water channel became unstable. (Pictures from
T. Frommelt)

with very similar flow patterns, one of which does not cause an accumulation (panels
a and b), while the other one does (c and d). Experiments with particles much smaller
than the critical radius have not yet been done.

A numerical corroboration of our hypothesis that the pressure field by the SAW acts as
a cap on the upstream eddy cannot be performed at the moment. The analysis of the
droplet deformations in Figures 2.12 and 2.13 was sufficient to provide the correct order
of magnitude for the drag and for the pressure forces on the particles. For the eddies
in Figures 3.12 and 3.13, however, the topology of the flow pattern plays a key role.
The nature of the driving by an SAW is not yet understood well enough to predict the
precise shape of the conservative part of the body force which causes the pressure barrier.
The three-dimensional flow pattern around this barrier is driven by the non-conservative
counterpart, as detailed in Section 1.1.1. Thus, the relative position of the two force
components and their relative orientation together determine the particle accumulation
qualities of the SAW.
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3.4. Summary

We have considered the transport of small particles in different types of flows. Two
different kinds of boundaries are taken into account, namely sticky immobile walls, im-
posing no-slip boundary conditions on the flow, and free surfaces, which are modelled
by perfectly slippery curved boundaries. Two different types of driving have been used,
namely simple pressure-driven flows in long channels, and SAW-driven flows in droplets
and water channels bounded by free surfaces.

A small particle, when immersed in a flowing fluid, is subject to quite a number of differ-
ent forces, which all are weak. The detailed analysis of the different forces, as provided
in Section 3.1, makes clear that an accumulation of particles in a flow may be caused
either by a boundary effect or a volume effect. This accumulation of particles, which is a
highly dynamical effect by populating different streamlines in a flow differently, can be
described by the stationary Fokker–Planck equation (3.45) with the drift velocity (3.41).
Depending on the shape and the size of the particle, different terms in the equation for
the drift velocity are dominant.

We found that in the situation of a pressure-driven flow in a long channel, the drift velo-
city of a particle is essentially given by the velocity of the fluid. In this case, the flow
in the channel cannot give rise to any accumulation effect. All effects must come from
the channel boundaries. The further investigation of the boundary effect in Section 3.2
revealed that the boundary condition of the flow at the channel wall has a great influ-
ence on the accumulation pattern. We used channels which are curved at one side and
straight at the other. As a general tendency, we found an accumulation of particles near
the straight boundary than near the curved one, independent of the flow direction and the
particle size. Only for specially shaped curved boundaries we found an accumulation
inversion, leading to a higher concentration of particles near the curved boundary. When
utilising free surfaces instead of no-slip walls, we found the accumulation effects to be
larger, which is a direct consequence of the higher velocities at free surfaces, compared
to walls. Also the accumulation inversion occurred for various shapes and for different
particle radii. This result shows that an effect similar to the particle separation in the
drift ratchet, which has been introduced in Section 1.3.1, is in principle possible also
in systems with free surfaces, such as the one in Figure 1.5. As we assumed the flow
to be stationary, not oscillating like in the drift ratchet, we found a particle transport in
perpendicular direction of the main flow direction.

In SAW-driven flows, a volume accumulation effects can be found in the vicinity of the
SAW. According to the formula for the drift velocity (3.41), the particles are transported
by means of viscous drag and by means of the pressure gradients. Estimating the mag-
nitude of these respective forces is possible with the aid of the pressure and flow fields
we have obtained from the droplets in Chapter 2. As a result, there must be a critical
radius of particles, where both forces are balanced. Larger particles get accumulated in
a flow eddy in front of the SAW, while smaller particles tend to remain distributed.
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The present thesis deals with microfluidic flows, where we usually have in mind small
droplets or water channels, bounded partly by free surfaces, partly by a flat substrate. The
fluid in these geometries is water, actuated by surface-acoustic waves (SAWs) by means
of the acoustic streaming effect. We provide a stable and accurate numerical algorithm
for the calculation of the resulting stationary flows with deformed free surfaces in the
parameter regime of microfluidics, that is here characterised by a small Reynolds number
together with Bond and capillary numbers up to unity. The consistent derivation of this
algorithm with the aid of the calculus of variations is provided in Chapter 2: We propose
to split the combined problem of finding the correct shape of the fluid domain, especially
the free surface, and of finding the flow inside this domain, into two separate steps. The
steps are processed successively, until the free surface has reached its target position.

Concerning the variational derivation of the Stokes equations together with the stress
balance at the free surface in Section 2.2, we found that this variational description cannot
be given in a fully consistent way. Despite the fact that the Stokes equations, describing
a slow stationary viscous flow, can be obtained from a minimisation of a functional, and
despite that also the behaviour of the free surface in a static setting can be obtained from
a minimisation of a free energy, both approaches cannot be combined to yield a single
functional for the full free-surface problem. This astonishing result is due to the different
origins of the contributing forces. The tension forces are of thermodynamic (or rather
thermo-“static”) nature, while the viscous stress stems from dynamic considerations.

So far, the presented algorithm is restricted to two-dimensional free-surface flows with
pinned contact-lines. Extensions to free surfaces with contact lines that are not pinned,
that move, or that even lead to a breakup of the surface, appear to be possible. Still, there
are some hurdles to be overcome, some of which can already be identified here. The
presented covariant derivation of the forces at the free surface allows to clearly identify
the occurring complications. One of them concerns the above mentioned different origins
of the contributing forces, being of static or dynamic origin. The same problem arises
when non-pinned contact lines are considered, which adjust their position according to
thermodynamic and dynamic principles. Beside other complications, also the descrip-
tion of moving contact lines (see Thiele, 2003; Huh and Scriven, 1971; de Gennes, 1985;
Dimitrakopoulos and Hidgon, 1999; Solonnikov, 1995; Leger and Joanny, 1992) as well
as the treatment of pinch-off and breakup phenomena of free surfaces (Eggers, 1997;
Notz et al., 2001; Cohen et al., 1999; Brenner and Gueyffier, 1999) encounters this fun-
damental problem. In our derivation, the different origins of the forces at the free surface
became manifest in the principally unknown mutual dependence of the stress tensor and
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the surface parametrisation, when we had to introduce the approximation (2.63). An-
other indication on fundamental problems of the continuous variational description of
free surfaces is our numerical observation of instabilities caused by the last integral in
the second variation of the surface’s free energy, see the comments on equation (2.89).

The presented covariant formulation of the forces at the free surface further opens the
possibility to utilise the powerful differential geometric description of free surfaces in
finite-element implementations of the Stokes equations. It thus provides a natural ap-
proach to treat surfaces and interfaces with a richer behaviour such as lipid vesicles
containing bending stiffness, area constraints, and much more. Many potential applica-
tions can be found in the literature on lipid vesicle geometry, where more complicated
expressions for the surface free energy contribution are in use (Guven, 2004; Capovilla
et al., 2003; Seifert, 1997).

The free-surface flows in this thesis were driven by a bulk force that effectively modelled
the influence of a SAW. The acoustic streaming effect, which takes place on two differ-
ent time scales, still contains several aspects that are to be investigated further. To be
mentioned is the large Reynolds number of the flow in the vicinity of the surface of the
substrate, which causes problems in the theoretical description, see Section 1.2.

The second focus of the present thesis resides on particle transport in free-surface flows.
The setup considered here is similar to the drift ratchet, which employs a driving periodic
in time, see Section 1.3. We found that also in a stationary flow a particle transport can
be achieved which is based on the finite extension of the immersed particles, on thermal
fluctuations, and on the asymmetric shape of the boundaries of the flow. This effect
can be considered a boundary effect, since it is caused by the boundary condition of
the stationary Fokker–Planck equation which describes the long-time behaviour of the
particle distribution. The boundary effect is based on the fact that the centre of a particle
cannot come arbitrarily close to the boundary of the flow. In this situation, a small
contribution of the force on the particle normal to the boundary either keeps the particle
near the boundary, or pulls it away.

Concerning the boundary accumulation effect of the flows, we employed a description
that modelled the interaction of a particle and a boundary as the collision of a hard
sphere with a wall. A more detailed investigation would require also the influence of the
particle shape on the drag forces. Taking the complete hydrodynamic interaction with
other particles and with different types of boundaries into account would then be a next
step. In our model, we found a strong dependence of the accumulation effect on the type
of boundary, whether it imposes no-slip or perfect-slip boundary conditions on the flow.
Also the hydrodynamic interactions between a boundary and a particle surely depends on
the type of boundary condition. A comparison of the results from our model with those
of a more detailed description, would provide insight into the influence of the boundary
conditions. Another possible extension of our model concerns flexible particles.

A second accumulation effect has been observed in the volume close to the point where
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the SAW enters the fluid. Here, several interesting phenomena take place. One of them
is that the fluid and the immersed particles are transported differently by the body force
caused by the SAW. This body force is the stationary impact of the SAW on the fluid.
Whether there are more direct forces by the SAW on an immersed particle, such as by
the generated sound wave, or whether there is an influence of a suspension of particles
on the acoustic streaming effect, are open problems. The calculations of chapter 2 allow
the conclusion that the body force that is caused by the SAW must comprise a strong
conservative contribution. This part of the force gives rise to a pressure field, which then
imposes a force on extended particles, but does not act on the fluid. As a result, particles
and fluid experience different forces, leading to an accumulation of particles in an eddy
on the upstream side of the SAW. How efficient this accumulation is, depends on the size
of the particles. Large particles are densely concentrated, while small particles remain
distributed.

This last calculation nicely combines the results of both aspects in the SAW-driven mi-
croflows, which have considered in the present thesis. The geometry of deformed micro-
droplets in Chapter 2 helped to understand the role of the conservative and the non-
conservative parts in the driving force, which proved useful for the accumulation effects
in Chapter 3.
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Appendix A.

Free-surface flow in a half cylinder:
an analytical solution

In order to show how intricate the calculation of free-surface flows can become, we
present a simple example. A water strand in the form of an infinitely long half cylinder
is driven by a homogeneous body force parallel to the cylinder axis ez. Figure A.1
illustrates the situation. The contact surface with the substrate poses a no-slip boundary
condition for the flow. The cylinder barrel is a fluid–air interface in the limit of infinite
surface tension, thus presenting a perfect-slip boundary condition (1.16) for the flow.
Due to the symmetry of the setup, we assume that the velocity is stationary and contains
a non-vanishing component vz only in z-direction. The incompressibility condition then
requires that vz does not depend on z. A transformation to polar cylindrical coordinates

ex

ey

x

x̄

−fz/η

fz/η

B+B−

Figure A.1. Left panel: The geometry of a half-cylinder flow. The velocity at the substrate is zero, while
the curved boundary is a free surface. The channel is assumed to have the same radius everywhere and
to be infinitely long. Right panel: The grey shaded area indicates a cut through the fluid domain. Its
completion to the full circle indicates the area where the Green function for the Poisson equation with
Neumann boundary conditions is defined. The driving in the grey-shaded area is −fz/η, while it has
opposite sign in the white half circle. Thus, the velocity at y =0 vanishes.
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(r,ϕ,z) yields the stationary Navier–Stokes equation as

0 = −∂rp(r, ϕ, z) , (A.1)

0 = −1

r
∂ϕp(r, ϕ, z) , (A.2)

0 = −∂zp(r, ϕ, z) + η
(1

r
∂rr∂r +

1

r2
∂2

ϕ

)
vz(r, ϕ) + fz . (A.3)

The nonlinear terms vanish identically. With the stress tensor in cylindrical coordin-
ates (see e.g. Aris, 1989, p. 181) and with the normal vector er, namely the basis vector
in radial direction, we obtain the coordinates for the normal stress, [σN]r

[σN]ϕ
[σN]z

 =

 −p 0 η∂rvz

0 −p η∂ϕvz/r
η∂rvz η∂ϕvz/r −p

1
0
0

 =

 −p
0

η∂rvz

 . (A.4)

These lead to the following boundary conditions at the free surface,

− p(R,ϕ, z) = γκ , (A.5)
η∂rvz(R,ϕ) = 0 . (A.6)

Equation (A.5) is the normal projection of the stress balance, which we have found
already in Section 1.1.4 as the Laplace–Young condition (1.15). Equation (A.6) is the
perfect-slip condition (1.16 b). Equations (A.1) and (A.2) together with the boundary
condition (A.5) determine the pressure to be constant

p(r, ϕ, z) = −γκ =
γ

R
, (A.7)

which causes also the term ∂zp in (A.3) to vanish because the radius of the cylinder does
not depend on z. Therefore, already by construction, the flow cannot be driven by a
pressure gradient, and only a body force fz is able to generate a flow.

The symmetries of the three-dimensional problem have been chosen such that it reduces
to a two-dimensional Poisson equation with mixed Neumann and Dirichlet boundary
conditions

∆vz(r, ϕ) = −fz/η in the half circle , (A.8)
∂rvz(R,ϕ) = 0 at the free surface , (A.9)
vz(r, ϕ) = 0 at the substrate , (A.10)

where ∆ denotes the Laplace-operator in two dimensions. By employing an image tech-
nique, the mixed boundary condition can be simplified to a pure Neumann boundary
condition. We add a driving with opposite sign at the opposite half of the circle, as in-
dicated in the right panel of Figure A.1. The solution is then given by the proper Green
function together with the driving force,

vz(x) = − 1

2π

∫
B+

fz

η
G(x,x′) dx′ +

1

2π

∫
B+

fz

η
G(x̄,x′) dx′ , (A.11)
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where the integration is performed only over the upper half of the circle. The point x̄
is given by reflection of the point x at the x-axis, see Figure A.1. The Green function
consists of the usual logarithmic part for the free-space problem, and a term accounting
for the boundary condition,

G(x,x′) = ln(|x− x′|) + F (x,x′) . (A.12)

The function F is determined by the Laplace equation

(1

r
∂rr∂r +

1

r2
∂2

ϕ

)
F (r, ϕ, r′, ϕ′) = 0 , (A.13)

with the boundary condition at r=R

∂rF (R,ϕ, r′, ϕ′) =
1

R
− ∂r ln(|x− x′|) . (A.14)

The solution can be found with the aid of a Fourier series for the angular arguments of
ln(|x−x′|) and by using an expansion of the Laplace equation (A.13) in Bessel functions.
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Figure A.2. The velocity profile in the half-cylinder geometry for R = 1 and fz/η = 1. In panel (a) the
function vz is given in the x,y-plane. Panels (b) and (c) depict the velocity vz(r,ϕ) for selected values of
ϕ and r. The free-surface boundary condition leads to the vanishing slope of the curve in (b) at r =1.
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Appendix A. Free-surface flow in a half cylinder: an analytical solution

We find for this part of the Green function,

F (r, ϕ, r′, ϕ′) = −
∞∑

n=1

1

n

(rr′
R2

)n

cos
[
n(ϕ− ϕ′)

]
(A.15)

=
1

2
ln
(
1 +

r2r′2

R4
− 2

rr′

R2
cos(ϕ− ϕ′)

)
. (A.16)

The integral in (A.11) then equates to the solution of the problem, namely

vz(r, ϕ) =
4fz

πη
r2

∞∑
m=1
m odd

sin(mϕ)

m(m2 − 4)
− 8fz

πη
R2

∞∑
m=1
m odd

( r
R

)m sin(mϕ)

m2(m2 − 4)
, (A.17)

which is depicted in Figure A.2.
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Appendix B.

Calculus of variations for the
differential geometry of a surface

In order to prove equation (2.26), we express the change of the surface free-energy func-
tional (2.21) by the change of the Jacobi determinant

√
a of the surface parametrisation.

With the infinitesimal surface area dA=
√
adν the variation of the surface free-energy

is given in terms of the variation of its parametrisation t,

δF(γ)[δt] = δ
(∫

A

γ dA
)
[δt] (B.1)

=

∫
E

γ δ
(√

a
)
[δt] dν =

∫
E

γ
∂
√
a

∂tiα
δtiα dν . (B.2)

This is a higher-dimensional variation problem. We vary the D functions ti, which de-
pend on (D−1) independent variables. Our use of the covariant formulation appears
to be the natural choice for the calculus of variations, see also the excellent survey by
Lovelock and Rund (1975). The dependence of

√
a on the tangential vectors follows

from its definition as the determinant of the covariant entries of the surface metric tensor.
For a two-dimensional surface, this reads

a =

∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ =
1

2
εαγεβδ aαβ aγδ =

1

2
εαγεβδ gij gkl t

i
α t

j
β t

k
γ t

l
δ , (B.3)

where εαβ is the permutation symbol in two dimensions,

εαβ =


0 α= β,

+1 α= 1 and β= 2,
−1 α= 2 and β= 1,

(B.4)

which is a relative surface tensor with weight +1. The absolute tensor results as

εαβ =
εαβ

√
a

. (B.5)
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Appendix B. Calculus of variations for the differential geometry of a surface

This is analogous to the completely antisymmetric tensor in three dimensions, described
in detail by Aris (1989). With the antisymmetric tensor we obtain the inverse of the
surface metric tensor as

aαβ = εαγεβδaγδ . (B.6)

A formal differentiation of (B.3) with respect to the surface parametrisation yields

∂a

∂tiα
= 2gijt

j
βε

αγεβδaγδ = 2a gija
αβtjβ = 2a tαi and (B.7)

∂
√
a

∂tiα
=

1

2
√
a

∂a

∂tiα
=
√
a gija

αβtjβ =
√
a tαi , (B.8)

which can be inserted into (B.1) to give the desired result (2.26).

For a one-dimensional curve in two-dimensional space, the same formula (2.26) can
be derived, but the notation may be somewhat confusing. Summation over the single
surface index makes no sense. Nevertheless, we still have to distinguish between co- and
contravariant relative tensors, i. e.,

a = a11 = gijt
i
1t

j
1 , (B.9)

a11 = 1/a11 because a11a11 = aαβaαβ = 1 . (B.10)

The formal derivative then becomes

∂
√
a

∂ti1
=

1

2
√
a

2gijt
j
1 =

√
a gijt

j
1

1

a11

=
√
a gijt

j
1a

11 , (B.11)

which completes the proof of (2.26) also for a one-dimensional surface.

It is important to note that in (B.2) we have differentiated only with respect to the covari-
ant surface-vector tiα and not with respect to any other covariant surface-tensors of higher
order. The first covariant surface-derivative is equivalent to a partial derivative, because
the spatial components ti of the parametrisation are scalars with respect to the surface
coordinates, see (2.14). In case that a functional contains higher-order surface tensors,
one has to pay attention to the difference between covariant derivatives and partial deriv-
atives of ti. Especially for the integration by parts over the surface, which leads from
equation (2.26) to (2.30), this is of concern. For the integration by parts to be carried out,
we need that the variation and the surface-derivative commute,

δ(tiα) = δ(ti,α) = (δti),α . (B.12)

For higher-order surface tensors, the variation and the surface-derivative do not commute.
This can be seen from the definition of the covariant surface-derivative of a hybrid surface
and space tensor, which per se contains the tangential vectors already in its derivative,

Ai
α,β =

∂Ai
α

νβ
−
{ γ
αβ

}
Ai

γ +
{ i
j k

}
Aj

α t
k
β . (B.13)
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The Christoffel symbols {∴} are those of the surface and the embedding space, respect-
ively. Thus, the variation does not commute with, for example, the second derivative of
the surface parametrisation,

δ(ti,αβ) = N iNj(δt
j),αβ − bαβt

i
δa

δγδtjγNj . (B.14)

For the first variations (2.27), (2.28), (2.56), and (2.58), as well as for the second vari-
ations (2.59) and (2.61) we need the variations of the inverse metric tensor of the surface,
of the normal vector, and of a few other terms. They can all be calculated like the varia-
tion of the Jacobi determinant in (B.8). Here, we summarise the results,

δaαβ = gij(δt
i
αt

j
β + tiαδt

j
β) , (B.15)

δa = 2aδtiαt
α
i , (B.16)

δ
√
a =

√
a δtiαt

α
i , (B.17)

δNi = −δtjαtαi Nj , (B.18)

δ(
√
aNi) =

√
a
[
Ni(δt

j
αt

α
j )− tαi (δtjαNj)

]
, (B.19)

δaαβ =

{
−2aαβ δtiδ t

δ
i in 2D

−2aαβ δtiδ t
δ
i + δtiγ gij t

j
δ(ε

αγεβδ + εαδεβγ) in 3D,
(B.20)

= −δtiγ(aαγtβi + aβγtαi ) . (B.21)

In the last identity, the fourth-order isotropic tensor εαγεβδ is expressed as a superposition
of the only three possible isotropic tensors of fourth order,

εαγεβδ = λaαγaβδ + µ(aαβaγδ + aαδaβγ) + ν(aαβaγδ − aαδaβγ) . (B.22)

(Anti-)symmetry properties then determine the coefficients as λ=µ= 0 and ν = 1.

From equation (B.18) it follows that the normal projection Niδt
i
α of the varied tangential

vector does not vanish. If it did, the change of the normal vector due to changes of the
tangential vectors would also vanish, which is impossible.

The following terms are needed for the second variation of
√
a tαi ,

δ(tαi ) = δtjβ(gija
αβ − tβi t

α
j − tγi tjγa

αβ) , (B.23)

δ(
√
a tαi ) =

√
a δtjβ(NiNja

αβ + tαi t
β
j − tβi t

α
j ) . (B.24)
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Appendix C.

An implementation of the
perfect-slip boundary conditions:
a constraint method

The tangential components of the free-surface stress balance (1.11) correspond to the
perfect-slip boundary condition (1.16 b). When this condition is expressed as a set of
constraints for the DOFs, we obtain one equation like (2.77) for each DOF at the free
surface. Because the derivatives of the second-order ansatz functions φd generally do not
vanish at proximate nodes, the constraint equations contain non-vanishing weights for all
DOFs that are located on the same element. As a result, the constraints for DOFs that are
connected to two adjacent elements create dependencies of DOFs also on other elements.
This is illustrated in Fig. C.1a. Consequently, all DOFs on the free surface depend on
each other.

In order to avoid this full mutual dependence, we replace the constraint equation of the
type (2.75) by the equation

ud = wd +
∑
e∈Λd

wdeue +
∑
e∈Λd

wdeu
(old)
e , (C.1)

where the sums run over two complementary sets Λd and Λd. The DOFs in Λd contribute
to the constraint for ud in the usual way, while those in Λd have been substituted by their
old values u(old)

e and thus contribute to the inhomogeneity. There is some freedom in
the choice which of the participating DOFs in one element belong to Λd and which ones
are taken into Λd. We found that the combination illustrated in Figure C.1b works well:
For the DOFs located at element vertices we take those DOFs which belong to adjacent
nodes on the free surface as inhomogeneities; all other constraining DOFs are located at
inner nodes and are not constrained. The DOFs located at second-order nodes on the free
surface acquire their full constraints. When all constrained DOFs are expressed by non-
constrained DOFs, then the resulting constraint equations will only contain DOFs that are
located at inner nodes of three adjacent elements. This presents a sufficient decoupling
of the constraint equations to yield an efficient algorithm.
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Appendix C. An implementation of the perfect-slip boundary conditions: a constraint method

(a)

(b)

Figure C.1. A sketch of the dependencies among the DOFs located on three elements. The free surface is
indicated by the thick curve. Constrained DOFs are surrounded by small circles. The nodes carrying the
corresponding constraining DOFs are surrounded by curves drawn in the same style (solid and dashed for
vertices; dotted and dash-dotted for second-order nodes). Panel (a) depicts the full mutual dependencies,
while in (b) the DOFs located at vertices depend only on DOFs located at inner nodes. By taking in (b)
the values of the missing adjacent DOFs located on the free surface as inhomogeneities rather than as
constraints, the DOFs of adjacent elements become decoupled. The correct constraint equations are then
established after some iteration steps.

Although the boundary condition given by equation (C.1) is not the correct one when
the true velocity field has not yet been determined, it still improves as the velocity field
approaches the solution. Thus, there is hope that the correct boundary condition is es-
tablished by successive application of equation (C.1) using increasingly better values for
the u(old)

e . In numerical experiments, the scheme for splitting the cross-dependencies as
illustrated in Figure C.1b turned out to be the only one that works. In the examples of
Figures 2.12 and 2.13, it took about 20 iteration steps to establish the correct boundary
condition from scratch, and 5 iteration steps to re-establish it after a change of the mesh.
This could be readily observed, because after the first iteration step the velocity field
exhibited oscillations at the boundary nodes that ceased during iteration.

In the channels of Figure 3.7, we employed a modification of the above described proced-
ure. It turned out that the use of the old values u(old)

e took very long to converge, or did
not converge to the correct result. A better choice was to take instead the velocity values
of the constrained node itself. This velocity was transformed in order to utilise the same
normal and the tangential components at both boundary nodes, thus accounting for the
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change of the surface shape between the adjacent node and the constrained one.
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Appendix D.

Green functions for stationary Stokes
flow

As in Chapter 3, the following equations are written in Cartesian coordinates with metric
tensor δij . We will write all indices in lower position and assume indices which occur
twice in a term to be summed over.

D.1. Green functions for the inhomogeneous Stokes
equations

The Green functions for the Stokes equations (1.4) and (1.6) are defined to express the
pressure, velocity and stress as linear functionals of the externally applied body force
field,

p(x) =

∫
Ω

Pk(x,y)fk(y) dV (y) , (D.1)

vi(x) =

∫
Ω

Kik(x,y)fk(y) dV (y) , (D.2)

σij(x) =

∫
Ω

Tijk(x,y)fk(y) dV (y) . (D.3)

If the fluid domain is unbounded (Ω = R3) and if the flow vanishes at infinity, then the
Green functions for the pressure and the velocity equal the fundamental solutions of the
Stokes equations (Dhont, 1996),

Pk(r) = − 1

4π

(1

r

)
,k

=
1

4π

rk

r3
and (D.4)

Kik(r) =
1

8πη

(δik
r

+
rirk

r3

)
, (D.5)
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Appendix D. Green functions for stationary Stokes flow

which depend only on the difference vector r=x−y. The absolute value of the vector r
is denoted by r. From equations (D.4) and (D.5) we find the fundamental solution also
for the stress tensor,

Tijk(r) = − 3

4π

rirjrk

r5
. (D.6)

The fundamental solutions satisfy the Stokes equations with a point-force located at the
point y,

Kik,i = 0 , (D.7)
Pk,i(r)− η∆Kik(r) = δikδ(r) . (D.8)

One third of the delta function in equation (D.8) is contributed by the Green function of
the pressure, while the other two thirds stem from the velocity. Integration over a small
ball Bε(0) around the origin yields

lim
ε→0

∫
Bε(0)

Pk,i dV =
1

3
δik , (D.9)

−η lim
ε→0

∫
Bε(0)

∆Kik dV =
2

3
δik . (D.10)

D.2. Green functions for the homogeneous Stokes
equations

The boundary integral method expresses the homogeneous solution of the Stokes equa-
tions in terms of integrals over the domain boundary. It is based on the reciprocal iden-
tity (3.11) of the fundamental solutions, namely

0 =
∂

∂xj

[
Kik(x− y)σij(x)− vi(x)Tijk(x− y)

]
.

This identity holds for points x 6=y.

For the analysis in equations (3.18)–(3.22), we require the integrals of the fundamental
solutions for the velocity field and the stress over a spherical surface SR(0). The sphere
is embedded in three dimensions and centred at the origin. Carrying out the integral
of the fundamental solution Kik, we obtain different values, depending on the relation
between y and R,∮
SR(0)

Kik(x− y) dA(x) =
1

8πη

∮
SR(0)

( δik
‖x− y‖

+
(xi − yi)(xk − yk)

‖x− y‖3

)
dA(x)

=
1

8πη

[
δik

{
16πR/3

4πR2

y

(
1 + 1

3
R2

y2

) }
+
yiyk

y2

{
0

4πR2

y

(
1− R2

y2

) }] . (D.11)
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D.2. Green functions for the homogeneous Stokes equations

The upper values in the braces are valid for y≤R and the lower ones for y >R. This
integral can be carried out in an appropriately rotated coordinate system, where one axis
is aligned towards the point y. The general case (D.11) then follows from the rotation
back into the original coordinate system. The integral of the fundamental solution Tijk

over the same sphere reads

∮
SR(0)

Tijk(x− y) dA(x) = − 3

4π

∮
SR(0)

(xi − yi)(xj − yj)(xk − yk)

‖x− y‖5
dA(x)

=
(
δij
yk

y
+ δik

yj

y
+ δjk

yi

y

){ 0
1/2
R4/y4

}
− yiyjyk

y3

{ 0
1

5R4/y4 − 3R2/y2

}
. (D.12)

The values in the braces correspond to y <R, y=R, and y >R from top to bottom.

For equations (3.20) and (3.22) we further need the Laplacians of the fundamental solu-
tions Kik and Tijk. For arguments r 6=0, they can be obtained directly by differentiation.
The results are

∆Kik(r) = ∆
(rirk

r3

)
=

2

r3

(
δik − 3

rirk

r2

)
, (D.13)

∆Tijk(r) = − 3

4π
∆
(rirjrk

r5

)
= 2
(δijrk

r5
+
δikrj

r5
+
δjkri

r5
− 5

rirjrk

r7

)
. (D.14)

For the special case that y =0, the following integrals can be carried out,∮
SR(0)

Kik(x)Nj(x) dA(x) =
1

8πη

∮
SR(0)

(δikxj

R2
+
xixjxk

R4

)
dA(x) = 0 , (D.15)

∮
SR(0)

Tijk(x)Nj(x) dA(x) = − 3

4π

∮
SR(0)

xixk

R4
dA(x) = −δik , (D.16)

where we have assumed the normal vector N to point out of the sphere SR(0).

We now carry out the integral of the right-hand side of equation (3.11) over a bounded
domain Ω. In case that the closure Ω does not contain the point y, this integral can
be cast into an integral over the boundary ∂Ω, as has been done in Section 3.1.2 for
equation (3.14).

In order to prove identity (3.15), which expresses the velocity inside Ω by the integral
over the boundary ∂Ω, we now consider a domain Ω, that does contain the point y in its
interior Ω̊. As the integrand possesses a singularity at this point, we must exclude a small
ball around y from the integration. By transforming the integral over the volume into an
integral over the whole boundary ∂Ω∪Sε(y), a contribution over a sphere with radius ε
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Appendix D. Green functions for stationary Stokes flow

is obtained,

0 =

∮
∂Ω

[
Kik(x− y)σij(x)− vi(x)Tijk(x− y)

]
Nj(x) dA(x)

+

∮
Sε(y)

[
Kik(x− y)σij(x)− vi(x)Tijk(x− y)

]
Nj(x) dA(x) . (D.17)

Note that here the normal vector N points into the sphere Sε(y). The last integral can be
carried out using relations (D.15) and (D.16), thereby assuming that the velocity and the
stress are analytic at the point y. In the limit ε→ 0 the linear and the higher-order terms
of the Taylor series

vi(x) = vi(y) + vi,l(y)[xl − yl] +
1

2
vi,lm(y)[xl − yl][xm − ym] + · · · (D.18)

σij(x) = σij(y) + σij,l(y)[xl − yl] +
1

2
σij,lm(y)[xl − yl][xm − ym] + · · · (D.19)

all vanish. Their integrals are of the type∮
Sε(0)

Kik(x)Nj(x)
[
xlxm · · ·xr

]
dA(x) , (D.20 a)

∮
Sε(0)

Tijk(x)Nj(x)
[
xlxm · · ·xr

]
dA(x) , (D.20 b)

which result at least in a linear dependence on ε, when carried out. The limit ε→ 0 makes
them vanish. Only the leading terms of the Taylor series remain. Then, the last integral
of (D.17) consists of the terms

lim
ε→0

∮
Sε(y)

Kik(x− y)σij(x)Nj(x) dA(x)

= σij(y) lim
ε→0

∮
Sε(y)

Kik(x− y)Nj(x) dA(x) = 0 , (D.21)

lim
ε→0

∮
Sε(y)

vi(x)Tijk(x− y)Nj(x) dA(x)

= vi(y) lim
ε→0

∮
Sε(y)

Tijk(x− y)Nj(x) dA(x) = vk(y) , (D.22)

which have been evaluated with the use of equations (D.15) and (D.16). Inserting (D.21)
and (D.22) into (D.17) concludes the proof of equation (3.15).
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