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A finite-element algorithm for computing free-surface flows driven by arbitrary body forces is
presented. The algorithm is primarily designed for the microfluidic parameter range where �i� the
Reynolds number is small and �ii� force-driven pressure and flow fields compete with the surface
tension for the shape of a stationary free surface. The free surface shape is represented by the
boundaries of finite elements that move according to the stress applied by the adjacent fluid.
Additionally, the surface tends to minimize its free energy and by that adapts its curvature to balance
the normal stress at the surface. The numerical approach consists of the iteration of two alternating
steps: The solution of a fluidic problem in a prescribed domain with slip boundary conditions at the
free surface and a consecutive update of the domain driven by the previously determined pressure
and velocity fields. For a Stokes problem the first step is linear, whereas the second step involves the
nonlinear free-surface boundary condition. This algorithm is justified both by physical and
mathematical arguments. It is tested in two dimensions for two cases that can be solved analytically.
The magnitude of the errors is discussed in dependence on the approximation order of the finite
elements and on a step-width parameter of the algorithm. Moreover, the algorithm is shown to be
robust in the sense that convergence is reached also from initial forms that strongly deviate from the
final shape. The presented algorithm does not require a remeshing of the used grid at the boundary.
This advantage is achieved by a built-in mechanism that causes a smooth change from the behavior
of a free surface to that of a rubber blanket if the boundary mesh becomes irregular. As a side effect,
the element sides building up the free surface in two dimensions all approach equal lengths. The
presented variational derivation of the boundary condition corroborates the numerical finding that a
second-order approximation of the velocity also necessitates a second-order approximation for the
free surface discretization. © 2006 American Institute of Physics. �DOI: 10.1063/1.2361291�

I. INTRODUCTION

In the past decade, the development of so-called
“labs-on-a-chip”1,2 has led to an increased interest in
microfluidics,3–5 i.e., in the field of hydrodynamics with
characteristic length scales of less than a millimeter. These
flows are characterized by small Reynolds numbers and con-
sequently governed by the Stokes equations. In the case of
prescribed fluid domains with no-slip boundary conditions,
standard numerical methods exist for computing their
solutions.6,7

Recently, various experimental techniques8,9 have been
developed to induce and control flows in fluids that sit on a
substrate without being confined by lateral and covering
walls.10,11 In the experiments, the fluid is kept together by its
surface tensions both at the substrate and at the fluid-air in-
terface. The stationary form that is assumed by the fluid-air
interface is not given a priori. It results from an interplay of
the internal streaming pattern, the internal pressure distribu-
tion, and the surface tension. On the other hand, the form of
the interface acts back on the flow. This mutual interaction of
form and flow renders free boundary value problems fasci-
nating but difficult. The relative importance of viscous flow
and pressure, each compared to the influence of the surface
tension, can be quantified by two dimensionless numbers, the
capillary number and a generalized Bond number, respec-
tively.

In the present work, we consider a small water droplet
�around 50 nl or less�. The droplet sits on a flat substrate and
is mechanically agitated by a body force.12 Inside the drop-
let, this body force then causes stationary pressure and flow
fields that can lead to a significant deformation of the free
surface. Sufficiently strong body forces may lead to the mo-
tion of the entire droplet, but this situation will not be con-
sidered here. The values of the Reynolds number, the capil-
lary number, and the Bond number are assumed to range
from zero up to unity. This corresponds to experimentally
relevant situations.10,11,13

Several numerical approaches for determining free sur-
face shapes have been proposed in the past. The suitability of
the approaches depends on the size of the system, typical
velocities, and the material properties, as well as on the re-
sulting deformation of the fluid domain. They can roughly be
classified into two groups:14 Either a fixed grid and a func-
tion describing the position of the free surface is used, or the
computational mesh is moved together with the fluid domain,
yielding a sharp surface representation by element bound-
aries.

An established method of the first kind is the continuum
method proposed by Brackbill et al.15 They circumvented the
discretization of the normal-stress boundary condition by in-
troducing a body-force density that is concentrated near the
free surface. This force density accounts for the effect of
surface tension. We have tested this method, which is imple-
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mented in the commercially available fluid-dynamics pro-
gram FLUENT using a volume-of-fluid discretization. For a
macroscopic system, this method worked fine. The method,
however, fails if the system is scaled down to the microflu-
idic parameter regime. In a simple test example, we found
that approximation errors of the free-surface boundary con-
dition contributed to the force balance in the Navier-Stokes
equations and were amplified in an uncontrolled manner.
This typically gave rise to a spurious velocity field. It even
occurred when we started the iteration with the known
solution. Problems with this method have also been reported
by Renardy and Renardy16 and by Popinet and Zaleski.17

Lafaurie et al.18 find the spurious velocities to be of the order
surface-tension/viscosity, which is the dominant velocity
scale for microfluidic systems. Thus, the existing continuum
method appears to be inappropriate for the microfluidic pa-
rameter regime.

Another approach of the first kind has recently been pro-
posed by Smolianski.19 He uses finite elements and a level-
set description for the free surface and calculates curvatures
by derivatives of the distance function. He too encounters
spurious velocity fields proportional to the ratio surface-
tension/viscosity.

Methods of the second kind, representing the free sur-
face by a sharp interface, are expected to work better in the
microfluidic parameter regime. Algorithms in this class are
often referred to as “moving mesh” or “ALE” methods and
generally require more involved techniques, keeping the
computational mesh feasible and not too distorted.

A technique of the second kind that has successfully
been employed for tension-dominated free-surface problems
is the boundary-element method.20,21 Pinch-off effects and
droplet formations can be described by this method.14 The
dimensionality of the equations is reduced to the dimension-
ality of the surface, which provides the basis for an efficient
implementation. Unfortunately, this reduction can only be
performed for Stokes equations with conservative body
forces, which can be absorbed into the pressure term. In the
present investigation, we allow for nonconservative body
forces that are of particular experimental relevance.9,10

Pioneering works for the finite-element implementation
of the full free-surface problem were published by Scriven
and co-workers.22,23 They used spines to parametrize the
movements of the computational mesh in coating flow and
implemented Newton’s method for a Galerkin approximation
scheme. This work was later continued under the designation
“total linearization method” by Cuvelier and co-workers.24,25

Their description requires a height function for the free-
surface position, which makes it necessary to use well-
adapted coordinate systems. Whether a free surface will
overhang must be known in advance.

In the present paper, we extend the works of Scriven and
Cuvelier to arbitrary surface geometries. In our description,
the parametrization of the free surface is given directly by
the finite-element boundary parametrization. Thus, neither
spines nor a height function are needed. To properly account
for intrinsic curvatures of the free surface, all equations are
formulated in a fully covariant form that allows for all
differential-geometric properties of the surface. An excellent

reference for this formulation can be found in the works of
Aris26 and Scriven,27 where the fluidic flow inside a curved
free surface is described.

Recently, algorithms have been published that describe
time-dependent free-surface flows, even in three
dimensions.28–30 In these works, the free surface is moved
mainly due to the kinematic boundary condition, i.e., it is
advected passively. Concerning convergence, there has been
a controversy if the kinematic or rather the normal stress
boundary condition should be used to move the free surface.
This issue was resolved by Silliman and Scriven, who state
that for capillary numbers below unity, the normal stress it-
eration converges well while a kinematic iteration eventually
fails.22 In addition, when the kinematic boundary condition is
used for updating the free surface, the balance of normal
stress that carries the effects of surface tension is not strictly
imposed. It is used when implementing the weak form of the
Navier-Stokes equations: In this context, an integration by
parts yields an integral of the normal stress over the free
surface, which is then replaced by the corresponding surface
integral of the tension forces. Similar techniques are com-
monly used for problems with outflow boundary conditions
or for Poisson’s equation with Neumann boundary condi-
tions. The correctness of the technique has been justified for
the outflow problem by Renardy.31 However, it is not evident
whether it also works in the case in which the surface-tension
terms dominate the whole problem. The question remains in
which sense the boundary condition is satisfied. Therefore,
we found it necessary in our examples to visualize the terms
involved in the free-surface boundary condition, thus prov-
ing that they are correctly balanced.

An important result of our variational description of the
tension terms is an improvement of the Newton algorithm
controlling possible mesh distortions at the free surface.
Many algorithms implementing the weak form of the capil-
lary boundary condition encounter intrinsic instabilities of
the boundary mesh when significant changes of the free sur-
face take place. For the program surface evolver,32 this mani-
fests itself in shrinking and growing surface facets. Similar
effects have been observed by Brinkmann33 and Bänsch.28

Our formulation of the capillary free surface is such that the
free surface smoothly changes to the behavior of a rubber
blanket when the boundary mesh becomes distorted. This
leads to an automatic regularization of the mesh without the
need of explicit remeshing or smoothing.

In Sec. II, the mathematical formulation of the problem
is presented in terms of differential equations, together with
the boundary conditions and the relevant parameter regime.
In Sec. III, we then reestablish the bulk equations and their
boundary conditions by variational techniques. For the free
surface, we introduce a differential-geometric notation that
allows us to write the boundary condition in a weak form.
Up to this point, a continuous description is used. Section IV
introduces the discretization of the problem by the computa-
tional mesh. The formulation of the tension forces as the
concurrent minimization of the free-surface area of single
finite elements is a necessary requirement for the mentioned
automatic regularization mechanism. Section V provides a
short summary of the whole algorithm. In Sec. VI, we
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present examples that show the accuracy of the algorithm
and two further examples for different values of the capillary
and Bond numbers. Mathematical and algorithmic details are
deferred to Appendixes A–D.

II. STATEMENT OF THE PROBLEM

Throughout the paper, we use tensor notation in arbitrary
curvilinear coordinates. This will considerably simplify the
differential geometric notation in the following sections. For
the formulation of the full Navier-Stokes equations in curvi-
linear coordinates, we refer to Aris.26 Repeated indices in co-
and contravariant positions are summed over. Indices pre-
ceded by a comma denote covariant derivatives, and gij is the
metric tensor of the underlying coordinate system.

A. The basic equations

We study incompressible and stationary flows, which are
characterized by a small Reynolds number Re=�x̄v̄ /�. Here,
� is the density of the fluid, � its viscosity, and x̄ and v̄
denote typical magnitudes of length and velocity. Under
these conditions, the pressure field p and the velocity field
with components vi satisfy the Stokes equations,34

v,i
i = 0, �1�

0 = �,j
ij + f i where �2�

�ij = − pgij + 2�eij, and eij = �vi,j + v j,i�/2, �3�

and where �ij is the fluidic stress tensor, eij the rate-of-strain
tensor, and f i an external body force causing nontrivial
streaming and pressure patterns within a domain V. It can be
split into a conservative part f �c�

i , which can be displayed as
the gradient of a potential and a nonconservative part f �nc�

i

with vanishing divergence. The domain V may be bounded
by rigid walls and by free surfaces, as, e.g., a droplet sitting
on a substrate. Equations �1� and �2� then are subject to
boundary conditions at the different parts of the boundary
�V: First, the flow has to meet the kinematic boundary con-
dition, requiring that the normal projection of a stationary
velocity field vanishes at the boundary, i.e.,

viN
i = 0. �4�

At immobile sticky walls, we use the no-slip boundary con-
dition, according to which the velocity vanishes also in the
tangential directions of the boundary, implying

viT�
i = 0 at the walls. �5�

Here, T�
i denotes the ith component of the tangential vector

T� ��=1,2 for a two-dimensional surface�. The remaining
boundary is a free surface that dynamically adjusts its posi-
tion such that the stress balance holds,

�ijNj = ��Ni on free surfaces, �6�

with the surface tension � and the curvature �. Note that we
have omitted a term proportional to the gradient of the sur-
face tension and thus exclude Marangoni effects. This sim-
plifies the following calculations but does not present a prin-
cipal restriction of our description.

Equations �1�–�6� have been simplified by assuming that
at the free surface the fluid always stays in contact with a
medium of low viscosity such as in the case of a water-air
interface. Therefore, the viscous stress contribution of the air
does not show up in the balance equation �6�. We further
assume that the ambient pressure p0 is constant. Since the
pressure is determined by the Stokes equations only up to a
constant, we can split it into a part p1 with vanishing average
and use the ambient pressure p0 as an offset parameter that
enters only in the normal stress balance �6�,

p�x� = p0 + p1�x� with �
V

p1dV = 0. �7�

B. The parameter regime

By transforming both the bulk equation �2� and the free
boundary condition �6� into dimensionless form employing
viscosity scaling, one observes that the system may be char-
acterized by two relevant ratios of forces, given by the di-
mensionless numbers

Bo =
f̄ �c�x̄

2

�
and Ca =

�v̄
�

. �8�

Here, x̄, v̄, and f̄ �c� denote typical magnitudes of length, ve-
locity, and the conservative part of the force density, respec-
tively. Bo is a generalization of the Bond number, which is
usually defined in terms of gravitational forces only. The
capillary number Ca measures the viscous contribution to the
surface deformation. In a system with static boundaries and
vanishing Reynolds number, we can express the velocity

scale by the typical magnitude f̄ �nc� of the nonconservative

part of the driving force, namely v̄= x̄2 f̄ �nc� /�. This yields an
alternative definition of the capillary number similar to that
of the Bond number,

Ca =
f̄ �nc�x̄

2

�
. �9�

These two numbers reflect the different effects of the conser-
vative and nonconservative parts of the driving. In this sense,
Ca also provides a measure for the spatial changes of the
velocity field. For small Ca, the flow is slow and changes
smoothly, whereas for large Ca it may exhibit drastic gradi-
ents.

We propose a numerical scheme for the parameter re-
gime where both Ca and Bo are of order unity or less. Thus,
pressure gradients and viscous forces can deform the free
surface significantly. The surface tension is large enough,
however, to keep the whole fluid domain together; a pinch-
off is excluded. The viscosity renders the velocity field
smooth over the whole fluid domain and prevents the exis-
tence of boundary layers. For the considered case of station-
ary flows on resting substrates in stationary domains, the
contact lines always stay pinned. A rolling or slipping droplet
would raise additional challenges regarding the stress near
the contact line that are beyond the scope of this paper.
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III. CONTINUOUS DESCRIPTION OF THE PROBLEM

In order to formulate the numerical treatment of the free-
surface boundary condition, we first explore the physical ori-
gins of the active forces. We will then express each of them
by the first variation of a functional. A modified Newton’s
method requires us to calculate the second variation.

A. Physical aspects of the free-surface boundary
condition: First variations

The surface tension term ��Ni in the boundary condition
�6� arises from the fact that an interface between two differ-
ent phases “costs” free energy.34 To find the optimal configu-
ration, the surface is continually probing positions in its
vicinity in order to minimize its free energy. For the case of
an applied conservative force f i=−�,i the system is static
�vi=0�, and the free-surface boundary condition is equivalent
to a minimization of a free-energy expression. This calcula-
tion is performed in Appendix A.

Due to its thermodynamic origin, the surface tension
term results from a first variation of a functional. This carries
over to the dynamic case �vi�0� in which the boundary
condition �6� must hold at any instant of time. The contribu-
tion of the free surface A to the free energy is given by the
integral of the surface tension � over A,

F = �
A

�dA , �10�

where dA denotes the infinitesimal surface area. Any smooth
surface in a D-dimensional space may be parametrized by
D−1 surface coordinates �� ��=1, . . . ,D−1�, which deter-
mine the coordinates ti���� of points in D-dimensional space
on the surface. Both surface and space coordinates are illus-
trated in Fig. 1. In our numerical studies, we restrict our-
selves to D=2. The general framework, however, remains
valid also for D=3. The surface coordinates �� are taken
from the parameter set E�RD−1. With � running through E,
the whole free surface A is covered,

tiE: → R:� � ti��� , �11�

A = �e�i�t
i����� � E� . �12�

Here, e�i� is the ith basis vector in space. Throughout the
paper, we will use Greek letters for surface indices and Latin
ones for space indices. The connection between surface and

space coordinates is conveniently described by the surface
derivatives of the parametrization functions �cf. Ref. 26,
p. 215�, i.e.,

t,�
i =

�ti

��� . �13�

The D-dimensional contravariant space-vector, t,�
i , represents

the components of the �th tangential vector T� of the sur-
face. At the same time, t,�

i is a covariant surface-vector. The
scalar products of these tangential vectors determine the
components of the surface metric tensor a�	,

a�	 = gijt,�
i t,	

j and a = det�a�	� . �14�

The normal vector follows as the normalized cross product
of two tangential vectors,

Ni = 1
2
ijk


�	t,�
j t,	

k , �15�

and the curvature � is given as the trace of the tensor b�	 of
the second fundamental form of the surface,

� = a�	b�	 with �16�

b�	 = t,�	
i Ni. �17�

Using the parametrization �11� of the free surface, we dem-
onstrate in Appendix B that the change of the free-energy
contribution F with respect to a variation of the surface po-
sitions ti is given by

�F��t� = �
A

�t,	
j gija

�	�t,�
i dA . �18�

By an integration by parts, this expression can be cast into a
form containing the curvature term of the free-surface
boundary condition �6�, i.e.,

�F��t� = − �
A

��Ni�tidA �19�

�see Appendix C also for the case of varying surface ten-
sion�. In this way, the curvature term � in Eq. �19� that con-
tains second spatial derivatives is replaced by a product of
two terms, each containing a first derivative in Eq. �18�. Es-
pecially for numerical applications, it is much more favor-
able to work only with first derivatives. This trick has been
used in the literature in different contexts.21,32,35,36,28 Seen
from a physical perspective, version �18� of the equation is
the more natural one. Here, one directly deduces that forces
pulling along the tangential direction attempt to minimize the
facet area of the boundary. On the basis of single finite ele-
ments, this perspective will be used below for stabilizing the
computational mesh.

The left-hand side of Eq. �6�, namely �ijN
j, is the normal

fluidic stress at the boundary. We now recapitulate how this
term can be understood as the result of a variational prin-
ciple. In a stationary system with rigid immobile boundaries,
the variational principle, which is attributed to Helmholtz
and Korteweg,37–40 states that the Stokes equations yield
those velocity and pressure fields that represent a stationary
point of the functional

FIG. 1. A sketch of the coordinate system on a two-dimensional surface A,
embedded into the three-dimensional space. The surface coordinates � are
mapped from the reference domain E �left� onto the surface A �right� via the
parametrization vector t���.
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P = �
V

PdV = �
V

��− pgij + �eij�vi,j − f ivi�dV . �20�

Vice versa, from the vanishing first variation of P,

�P��p� = �
V

�P
�p

�pdV = − �
V

v,i
i �pdV , �21�

�P��v� = �
V
	 �P

�vi
�vi +

�P
�vi,j

�vi,j
dV �22�

=�
V

�− f i�vi + �ij�vi,j�dV �23�

=− �
V

�f i + �,j
ij��vidV + �

�V

�ijNj�vidA , �24�

the Stokes equations follow by setting the bulk contributions
to zero. The boundary integral in Eq. �24� provides the flu-
idic stress contribution to the free-surface boundary condi-
tion.

At this point, we see that the two terms in the stress
balance Eq. �6� have different physical origins. The surface
tension is of thermodynamic �or rather of “thermostatic”�
nature while the fluidic stress stems from dynamic consider-
ations. The first minimizes a free energy, while the second
minimizes a power. Formally, this difference is expressed by
the distinct variations �vi and �ti in the expressions �ijN

j�vi

in Eq. �24� and ��Ni�ti in Eq. �19�. Already for dimension-
ality reasons they cannot be equal, nor can the functionals F
and P be directly combined into a single variational prin-
ciple.

From an algorithmic point of view, a choice has to be
made whether the free-surface boundary condition is ap-
proximated by means of either �vi or �ti as test functions. In
the Galerkin implementation of the problem, we will use the
ansatz functions of the finite elements as test functions. In
order to acquire a consistent numerical algorithm, in this
case both the velocity and the geometry parametrization
must be approximated by ansatz functions of the very same
order. This is the first central result of the present work.

It was stated by Bänsch28 �p. 42, cf. also citations 49 and
50 therein� that a second-order approximation of the surface
parametrization yields a “good discrete curvature,” whereas a
first-order one does not. The same can be seen below in Fig.
2. We are now able to substantiate Bänsch’s numerical ob-
servation with the underlying physical mechanism. The ar-
gument is similar to that for the celebrated Ladyzhenskaya-
Babuska-Brezzi requirement that velocity gradients have to
be approximated by the same order as the pressure. From a
physical perspective, this is not astonishing, because both are
components of the stress tensor.

B. Splitting the problem into two numerical systems

For free boundaries, a twofold problem must be solved:
�i� The unknown fluid domain V has to be determined and
�ii� the Stokes equations �1� and �2� have to be solved in V,

with the boundary conditions �4�–�6�. The latter depend on
the shape of V via the normal vector at the boundary. Both
parts of this problem cannot be processed independently.

In principle, two options exist to approach this combined
problem. The first one is to implement a single numerical
system for both the flow variables p and vi together with the
geometric variables ti. We will not follow this direction but
rather consecutively solve two smaller systems, one for the
flow variables, depending on the current domain V, and a
second one for the parametrization of the boundary. We have
chosen this approach because the problem is linear in the
flow variables but highly nonlinear in the geometric vari-
ables ti. The nonlinearity is caused by the appearance of the
inverse surface metric a�	 and of the Jacobi determinant con-
tained in dA in Eq. �18�. Thus, solving the Stokes equations
in the fluidic system, as we call it, will be a standard problem,
while the nonlinear search for the correct boundary shape
will be done in the geometric system. Both systems are
solved consecutively:

�1� Choose an initial domain V.
�2� Until convergence, repeat the following steps:

�a� Solve the fluidic system within the domain V.
�b� Solve the geometric system using fixed values for

the pressure and velocity variables. This results in
an updated domain V.

In three-dimensional space, Eqs. �4�–�6� pose four
boundary conditions. There are one too many for the linear
fluidic system to be fully determined. One boundary condi-
tion is thus used for updating the parametrization of the free
surface.24 The main challenge is the proper assignment of
specific boundary conditions for the two systems in order to
make them solvable, uniquely determined, and robust. It is
clear that the no-slip boundary condition �5� at sticky walls
applies only to the fluidic system. The free-surface boundary
condition needs further consideration.

Here, again, a physical argument helps to choose the
proper boundary condition. Either the stress by the fluid or
its velocity is employed for moving the free surface. Accord-
ingly, either the normal stress balance �6� or the kinematic
boundary condition �4� leads to an update of the surface in
the geometric system �see the discussion by Saito and
Scriven22 and our remarks in the Introduction�. We choose
our approach according to the following principle: The flu-
idic system should be well defined as a stationary system
even if the boundary is fixed and is not part of the problem.
The kinematic boundary condition must then apply to the
velocity field to prevent the fluid from passing through the
free surface. Thus, the kinematic boundary condition cannot
be used for updating the surface.

Before the correct boundary shape is reached, the vis-
cous stress of the flow may force the free surface into an
arbitrary direction. By its very nature, however, the tension
force always stays normal on the free surface. Only normal
forces can be compensated by a free surface. As a conse-
quence, the tangential projection of the normal stress has to
vanish.41 In the proposed scheme with two separated sys-
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tems, it is the fluidic system that must ensure the tangential
components of the free boundary condition �6�, i.e.,

�vi,j + v j,i�Nit,�
j = 0 for all � . �25�

As in Eq. �6�, the surface tension � has been set constant. For
the velocity variables, this constitutes a perfect-slip boundary
condition, which resembles a Neumann boundary condition.
We thus find the fluidic system to be fully determined and
physically well defined even for fixed boundaries by the con-
ditions �4�, �5�, and �25�.

The geometric system is then responsible for the remain-
ing normal component of the stress balance �6�,

− p + ��vi,j + v j,i�NiNj = �� , �26�

which is used as the update equation for the boundary. A
given trial position of the free surface is updated if Eq. �26�
is violated.

C. Second variation with respect to the surface
parametrization

In a first implementation we used a direct and explicit
update algorithm moving the boundary into a normal direc-
tion with a step width that is determined by a parameter �
and the residual of Eq. �26�. The discretization of this update
can be found below in Eq. �54�. Depending on the value of �,
this method exhibited strong instabilities. Although advanced
techniques for determining an apt value for � seem to exist
�cf. the program Surface Evolver by Brakke32�, we prefer a
modified Newton-Raphson iterative method. This has the ad-
vantages of faster convergence and less strong dependence
on �. It requires an additional variation of the surface free
energy for the assembly of the geometric system. Using the
same calculus as in Appendix B, we find the second variation
of the free-energy contribution F of a one-dimensional free
surface,

�2F��t,�t� = �	�
A

�gija
�	t,	

j �t,�
i dA
 �27�

=�
A

��t,�
i �t,	

j �NiNja
�	 + ti

�tj
	 − ti

	tj
��dA , �28�

where the contravariant surface indices are introduced in
Appendix B. Note that the precise form of the second varia-
tion influences only the convergence of the iteration, but not
the solution, which solely depends on the first variation.

Also the flow velocity, and by this the viscous stress,
depends on the shape of the surface. The formulation of the
modified Newton method requires also the change of the
fluidic stress integral due to changes of the free boundary,

�	�
A

�ijN
j�tidA
��t� = �

A

�ti�ij�Nj��t�dA

+ �
E

�ti�ijN
j��a��t�d�

+ �
A

�ti��ij��t�NjdA . �29�

The first two integrals on the right-hand side contain the
changes of the normal vector �15� and the infinitesimal sur-
face area dA=�ad� due to changes of the boundary shape.
Both can be calculated along the lines of Appendix B. The
third integral expresses the change of the fluidic stress �ij on
the boundary caused by changes of its position. The shape
changes act on the velocity field via the boundary conditions
�4� and �25� of the Stokes equations. Unfortunately, this in-
direct response of the viscous stress tensor to the changes of
shape cannot be expressed explicitly. We therefore assume
that this dependence is weak. The boundary conditions affect
only the velocity field, not the pressure, which is determined
only by the applied external force. A Taylor expansion of the
pressure field around the free surface yields for the change of
the stress tensor,

��ij��t�  − gijp,k�tk. �30�

This approximation assumes that the fluidic and the geomet-
ric systems are decoupled to the extent that the viscous part
of the stress tensor in the vicinity of the boundary is not
affected by small boundary changes. Note that this assump-
tion influences only the rate of convergence but not the final
result. The difficulty to describe the mutual dependence of
velocity field and surface geometry is not a consequence of
splitting the problem into two separate systems, but a general
problem that applies equally to the combined approach. Al-
together, the right-hand side of Eq. �29� becomes approxi-
mately

�
A

���ti�ijN
j���t,�

k gkla
�	t,	

l � − ��ti�ijt,�
j �a�	��t,	

k Nk�

− �tiNip,k�tk�dA . �31�

IV. DISCRETIZATION OF THE PROBLEM

We propose a discretization of the above equations by
means of a Galerkin approximation scheme that is known to
work well for minimization problems. As variables we intro-
duce the velocity components u and v in the x and y direc-
tion, respectively, the pressure p, and additional variables r
and s for the coordinates of the boundary parametrization
vector t. The continuous fields are discretized using ansatz
functions, weighted with the corresponding degrees of free-
dom �DoF�,

u�x� = �
d

udd�x�, v�x� = �
d

vdd�x� , �32�

p�x� = �
d

pd�d�x� , �33�

r�x� = �
d

rd�d�x�, s�x� = �
d

sd�d�x� , �34�

where the sum runs over all DoFs. The fluid velocity com-
ponents u ,v are approximated by the second-order finite
elements �FEs�  and the pressure variable p by first-order
FEs �. For the position variables r ,s we predominantly used
second-order FEs, but for accuracy and other testing reasons
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we also tried first-order FEs. We denote the position FEs
with �. All FEs are of the Lagrange family,6 having ansatz
functions that are 1 at exactly one node of the mesh and 0 at
all others. The DoFs are then equal to the function values at
the nodes. This property is most convenient for the position
variables �rd ,sd� that coincide with the coordinates of the
node d.

A. The fluidic system

The fluidic system is formulated in a standard way.
Equation �2� is tested with the second-order FEs , while the
continuity equation �1� is tested with the first-order FEs �.
The system consists of the following linear equations for the
DoFs, which are collected in the vectors u� ,v� , p� with compo-
nents ud ,vd , pd, respectively,

�Kuu 0 Kup

0 Kvv Kvp

Kpu Kpv 0
��u�

v�

p�
� = �Lu

Lv

0
� �35�

with the entry matrices K and entry vectors L given by

�Kuu�de = ��
V

� d · �edV − ��
�V

dN · �edA , �36�

�Kvv�de = ��
V

� d · �edV − ��
�V

dN · �edA , �37�

�Kup�de = − �
V

��xd��edV + �
�V

d�eNxdA , �38�

�Kvp�de = − �
V

��yd��edV + �
�V

d�eNydA , �39�

�Kpu�de = − �
V

�d�xedV , �40�

�Kpv�de = − �
V

�d�yedV , �41�

�Lu�d = �
V

dfxdV , �42�

�Lv�d = �
V

dfydV . �43�

All integrals are assembled in a loop over the elements and
the sides of the mesh, using a fifth-order Gaussian quadrature
rule. The fluidic system could likewise implement the sta-
tionary Navier-Stokes equations with a small Reynolds num-
ber; we choose the Stokes equation for simplicity reasons
here.

The boundary conditions are imposed by a constraints
technique for the matrix and for the right-hand side in Eq.
�35�. A constrained DoF ud is expressed by an inhomogeneity
plus a weighted sum of other DoFs,

ud = wd + �
e�d

wdeue, �44�

which represent the boundary condition in question. The
DoF ud is then completely eliminated from the linear system
�35�. By such constraint equations we write the kinematic
boundary condition �4� as

0 = �
e

�ueNx + veNy�e, �45�

the no-slip condition at the walls

0 = �
e

�ueTx + veTy�e, �46�

and a weak version of the tangential projection of the free-
surface boundary condition �25�,

0 = �
e
	ue

ve

 · 	 2TxNx TxNy + TyNx

TxNy + TyNx 2TyNy



��
�V

d	�xe

�ye

dA . �47�

The constraint equations differ only in the values of wde. The
inhomogeneity wd is zero in all three equations. Nonzero
inhomogeneities would result in the presence of gradients of
the surface tension or in the case of tangentially moving rigid
boundaries.

For the boundary condition �47�, which is equivalent to a
perfect-slip condition, an improper choice of the normal di-
rection can cause spurious contributions to the velocity field
�see Behr,42 Walkley et al.,43 and our remarks stated in the
Introduction�. In the presence of conservative forces only, we
did not find such spurious flows in our results.

The fact that the free boundary condition �47� cross-links
all DoFs residing at boundary nodes presents a serious prob-
lem. Each of the DoFs is in principle linked to all its neigh-
bors on the boundary. This leads to a nearly filled system
matrix that is unfavorable regarding memory capacity and
computing time. We found that an iterative method can over-
come this problem. Instead of cross-linking a boundary DoF
with all its neighbors, for some of them we take their old
values, as is detailed in Appendix D. After some iterations,
the full boundary condition �47� is established. The draw-
back of this scheme is that the constraint equations have
to be reassembled after every solution step of the fluidic
system.

B. The geometric system

In the geometric system, a modified Newton method is
employed to perform the nonlinear search for the correct
boundary position. This scheme corresponds to a minimiza-
tion of the free energy F, while taking the fluidic stress into
account. The boundary update equation can be written in a
discretized form as
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0 = �Lr�d�r�,s�,u� ,v� ,p�� ª
�F

�rd
+ �

A

�d�xjNjdA ,

�48�

0 = �Ls�d�r�,s�,u� ,v� ,p�� ª
�F

�sd
+ �

A

�d�yjNjdA ,

where d enumerates the geometric variables, and L and F are
functions of the arrays r� ,s�, etc. containing the DoFs. For the
original Newton-Raphson method, the geometric system re-
peatedly has to solve the linear system of equations44

	��Lr�d/�re ��Lr�d/�se

��Ls�d/�re ��Ls�d/�se

�old�	r�e

�new� − r�e
�old�

s�e
�new� − s�e

�old� 

= − �	�Lr�d

�Ls�d

�old�

, �49�

where �� �0,1� is a step-size parameter. In the original
Newton method, the block matrices on the left-hand side of
Eq. �49� consist of the second variations given by Eq. �28�.
This method turns out to be numerically unstable. This is a
surprising fact, because the calculation that has led to Eq.
�28� consists of two straightforward variations. A convergent
algorithm is obtained by modifying the block matrices, rep-
resenting instead of Eq. �28� the integral

�
A

��t,�
i �t,	

j gija
�	dA . �50�

The only fixed points of the Newton-Raphson method �49�
are the zeros of the vector �Lr ,Ls�. These are independent of
the particular choice of the matrix on the left-hand side of
Eq. �49�. The modified matrix leads to a convergent iteration
toward the accurate solution. This is confirmed by the ex-
amples in Sec. VI B. The analogous argument applies to the
approximation in Eq. �30�.

The search for the correct boundary shape is strongly
nonlinear in the position variables. In order to remove the
main nonlinearities, which are caused by the surface metric
expressions �a and a�	, the nodes of the elements are moved
to their corresponding coordinates �rd ,sd� after each step of
the geometric system. Then, all integrals can be performed
directly on the element edges. Also the normal vector can be
taken from the element sides. In the previous section, we
used a convenient variational notation to express the change
of the free-energy contribution F by changes of the boundary
parametrization. Essentially the same equations are obtained
by differentiating the discrete version of F with respect to the
DoFs, which are the nodal degrees of freedom of the corre-
sponding variables. The only difference is that the variation
�ti in the continuous formulation must be replaced by the
vectorial test function �dei, and the variation �t,�

i by its tan-
gential derivative T� ·��dei.

C. Controlling the tangential displacements
of boundary nodes

For a given discretization, we must not only find the
correct boundary shape, but its discretization should also re-
main well-proportionate. Very long and very short element

sides cause badly conditioned matrices and make the algo-
rithm unstable. Several algorithms implementing the weak
form of the free-surface boundary condition encounter these
intrinsic instabilities of the boundary mesh. For the program
Surface Evolver this manifests itself in shrinking and grow-
ing surface facets. It is therefore recommended to monitor
the mesh quality and remove too small or split too large
elements.32 Similar effects were reported by Brinkmann.33

In Sec. III B, the assignment of the boundary conditions
to the fluidic and the geometric systems was described.
There, we found that the presence of incompatible forces
may easily destroy a free surface that essentially attempts to
minimize the lengths A�m� of the free-surface sides in each
element m. Because all fluidic stresses are constrained to
have only normal components, we are free to use additional
tangential force components for keeping the boundary mesh
as regular as possible. This can be done during the assembly
of the system matrices by weighting the surface tension by
the element side length A�m�, divided by the average length
�A�m�� of all element sides contributing to the free surface. Of
course, this weighting factor becomes ineffective if all sides
have equal length. Any length difference of adjacent sides
causes an additional force that tries to equalize them. The
tension forces for each element side are then equivalent to a
first variation of the functional �A�m�

2 / �2�A�m���, which de-
scribes a rubber band with Hookean forces. Instead of �F��t�
from Eq. �18�, we thus assemble on each element

�

2�A�m��
��A�m�

2 ���t� = �
A�m�

�A�m��
�A�m���t� . �51�

The second variations of A�m� and A�m�
2 /2 are not proportional

to each other,

�

2�A�m��
�2�A�m�

2 ���t,�t� = �
A�m�

�A�m��
�2A�m���t,�t�

+ �
1

�A�m��
��A�m���t��2. �52�

In the implementation we therefore took only the first term
on the right-hand side of Eq. �52�. In this sense, we did not
strictly implement the behavior of a rubber band, but yet a
stabilized version of the free-surface tension terms. After
convergence, all boundary sides of the mesh representing the
free surface have equal lengths, and the extra terms
A�m� / �A�m�� do not change the behavior of the free surface.

V. SUMMARY OF THE ALGORITHM

Here, we provide a short overview of the complete algo-
rithm. The required steps are as follows:

�1� Choose an initial mesh and initial ambient pressure p0.
�2� Until convergence, repeat the following steps:

�a� Smooth the inner mesh if it is too distorted.
�b� Repeatedly solve the fluidic system for p, u, and v

until the perfect-slip boundary condition is estab-
lished.

�c� Subtract the average from p.
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�d� Solve the geometric system for the new boundary.
At the same time, search for the value of p0 that
keeps the volume unchanged.

�e� Set the mesh boundary nodes to the parametrization
values of the geometric system.

The fluidic system is assembled according to Eqs.
�35�–�43� with constraints that account for the proper bound-
ary conditions. To give the full algorithm at this point, we

summarize also the terms of the geometric system. The up-
date Eq. �49� is written as

	Krr Krs

Ksr Kss

	r��new�

s��new� 
 = − �	Lr

Ls

 + 	Krr Krs

Ksr Kss

	r��old�

s��old� 

�53�

with entries that are assembled per element m,

�Lr
�m��d = �

A�m�

�d�ex · � · N�dA +
�A�m�

�A�m��
�

A�m�

���d · T��ex · T�dA , �54�

�Krr
�m��de = − �

A�m�

�d�e�ex · �p��ex · N�dA + �
A�m�

�d���e · T���ex · �N��ex · T� − �ex · �T��ex · N��dA +
�A�m�

�A�m��
�

A�m�

���d · T�

����e · T�dA , �55�

�Krs
�m��de = − �

A�m�

�d�e�ex · �p��ey · N�dA + �
A�m�

�d���e · T���ex · �N��ey · T� − �ex · �T��ey · N��dA . �56�

The remaining entries can be obtained by permutations of x
and y together with r and s. Again, constraints were used to
keep the contact lines pinned. In all applications we used
values of � between 0.1 and 1.0.

VI. NUMERICAL EXPERIMENTS

We performed all our test cases for a two-dimensional
fluid. The programs were written using the open-source
C�� library libmesh,45 which allows changes to the element
geometry in a user’s routine and provides a powerful con-
straint method.

A. The instability of a “direct explicit update”
algorithm

In a first numerical example, we did not use the modified
Newton’s method with the update rule �53�, but instead with
the direct and explicit update rule

	r��new�

s��new� 
 = − �	Lr

Ls

 + 	r��old�

s��old� 
 . �57�

The stability of this update rule sensibly depends on the step-
size parameter �. The allowed range of � is a function of the
size of the elements, the curvature, etc. In a simple situation,
a homogeneous pressure field deforms the boundary into a
circular arc with radius R=−1/�= p0 /�. For the combination
R=0.5, �=1, and p0=2, we found the update rule �57� to be
stable for 14 first-order FEs and a given step size �=0.05.
The resulting approximation is indistinguishable from the
first-order approximation in Fig. 2. In contrast, the update is
unstable for the same step size and 52 first-order FEs. After a

few iteration steps, starting from the exact solution, the
finite-element approximation was completely destroyed. Us-
ing second-order FEs, the instability was similar.

B. Testing the accuracy of the modified Newton
algorithm

In order to confirm the accuracy of the curvature ap-
proximation of the algorithm in Eqs. �53�–�56�, we test two
cases that can be solved analytically. Similar to the calcula-
tion in Appendix A, a prescribed pressure determines the
free-surface shape. Then, the approximation in Eq. �30� be-
comes exact and simplifies to

��ij = − gijp,k�tk. �58�

Thus, possible approximation errors result only from the dis-
cretization of the curvature.

Figure 2�a� depicts the most simple situation in which a
homogeneous pressure field deforms the boundary into a cir-
cular arc, as in the previous example. The free surface shape
is approximated by the sides of five second-order FEs and 14
first-order FEs, respectively. In dimensionless units, the sur-
face tension is �=1 and the prescribed pressure p0=2 pro-
duces a circle with radius R=1/2 as the exact solution. The
initial geometry of both surface approximations was the
straight connection between the fixed end points. Good con-
vergence was reached after 100 iterations with step-size pa-
rameter �=1. The comparison of a second-order approxima-
tion with a first-order one, using more than twice as many
FEs, clearly reveals the superiority of the second-order pa-
rametrization. The relative errors of the numerically resulting
curvatures are about 8.6�10−6 and 5.0�10−3 for the
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second-order and first-order approximations, respectively.
These values are obtained from the position of the topmost
node.

The result of an alternative estimate of the approxima-
tion error is visualized in Fig. 2�b�. The normal vectors at
each node are calculated from the resulting finite-element
side. Due to the elements being second-order, we obtain a
unique normal vector at second-order nodes. At vertices
where two elements meet and where the surface parameter-
ization is not smooth, we average the resulting two normal
vectors. The curvature estimate at a node in Fig. 2�b� is then
given by the curvature of a circle sector that is determined by
the two neighbors of the specific node. The sector is bounded
by the two corresponding normal vectors; its chord length
equals the distance between the two neighbors. This yields a
reconstruction of the curvature from the change of the nor-
mal vector per arclength of the surface. It is clear by con-
struction that the normal vector at the end points cannot be
reliably estimated. This causes the outliers in Fig. 2�b�. All
other nodes fit well.

In the next accuracy test, depicted in Fig. 3, a variable
pressure is prescribed, for which the resulting boundary
shape is known. Figure 3�a� illustrates the approximation of
a sinusoidal boundary height function y=h�x�=� sin�	x�,
which is caused by the corresponding pressure field

p�x,y� = − ���x� = �
�	2 sin�	x�

�1 + �2	2 cos2�	x��3/2 . �59�

Again, the approximation in Eq. �30� becomes exact, and we
expect similar discretization errors as in the previous ex-
ample. The initial geometry was the straight line between the
end points of the surface. Good convergence was reached
after 60 iterations with step size �=1. The relative error of
the curvature 6.7�10−3 is larger than in the previous ex-
ample because the parts with the maximal curvature are dis-
cretized less densely. Nevertheless, the error is still small
enough to reproduce the expected boundary shape with ex-
cellent accuracy. It decreases with the number of approxi-
mating elements. A first-order approximation leads to a much
larger, possibly intolerable error of 2.0�10−1. The side
lengths of the elements in Fig. 3�a� vary only by ±0.007%.
This small deviation demonstrates that the mesh regulariza-
tion method does not influence the final behavior of the free
boundary.

Concerning the discretization errors of the curvature, the
accuracy test in Fig. 3 covers already the general case. Ac-
cording to the construction of the algorithm, the flow exerts
stress on the boundary only in a normal direction. Whether
this stress is of viscous nature or due to a pressure difference
is irrelevant for the resulting curvature.

C. A deformed microdroplet

In order to explicitly show that the quality of the curva-
ture discretization does not depend on the origin of the ap-

FIG. 2. Panel �a� depicts the free-surface deformation, which is caused by a
prescribed homogeneous pressure p0=2. The exact solution �dashed curve�
in Cartesian coordinates x and y is a half-circle with radius 1/2. Two finite-
element approximations are presented, one with five second-order FEs �up-
per solid curve� and another one with 14 first-order FEs �lower solid curve�.
The first-order FEs are bounded by vertices �indicated by small circles�,
while the second-order FEs also contain second-order nodes �small crosses�
in between. Panel �b� compares an estimate of the Laplace pressure �� and
the applied pressure p0 as a function of the spatial x coordinate. The agree-
ment is excellent, except for the outliers near the end points, where the
estimate of the curvature is less accurate.

FIG. 3. Same as Fig. 2, for an expected sinusoidal boundary shape
y=h�x�=0.25 sin�4�x�, generated by the prescribed pressure of Eq. �59�
with surface tension �=1. The approximated free surface consists of 40
second-order FEs.
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plied normal stress, we return to the introductory motivation
for the present work. The previous examples were analyti-
cally solvable. The form and internal streaming of micro-
droplets, however, cannot be determined analytically.

In the experiment, the internal flow is agitated by a
surface-acoustic wave �SAW� due to the acoustic streaming
effect.46 Because the very details of the impact of the SAW
are not known, we model it here by a body force that is
active in the fluid only, as depicted in Fig. 4. The force is
concentrated in a narrow channel that starts at the left contact
point where the SAW enters and continues into the fluid. The
fluid is carried along this channel, from the entry point of the
SAW into the droplet, giving rise also to a back flow.47 Ad-
ditionally, the force has a strong conservative portion that is
balanced by the pressure in the fluid.

The resulting stationary droplet shape and the internal
velocity and pressure fields are presented in Fig. 5. The ini-
tial shape was a half-circle with the same two-dimensional
volume. Good convergence was reached after seven itera-
tions with a step-size parameter �=0.5. The material proper-
ties are those of water and air at room temperature, i.e.,
�=10−3 kg/ms and �=72.8�10−3 N/m. The deformed
boundary consists of two regions, one with negative curva-
ture �as the initial half circle� and another one at the right
flank of the droplet with positive curvature. The—admittedly
strange—deformation of the droplet qualitatively agrees with
the experimentally observed jumping droplet in Fig. 4 of the
publication by Wixforth et al..10 The deformation is due to
the large conservative contribution of the driving force and
the resulting pressure. The viscous forces for the given ve-
locities are far too weak to lead to a substantial deformation
of the free surface. The capillary number for the illustrated
flow is Ca10−5; the Bond number is around 1. Although

the free surface is significantly deformed, its discretization
by finite-element sides is as regular as possible. Their lengths
vary only by 4.5�10−5%. This guarantees that the behavior
of the boundary is indeed that of a free surface and is not
influenced by the automatic regularization technique de-
scribed in Sec. IV C. Figure 5�d� quantifies the normal stress
condition. For each node, we integrated the normal and the
tangential component of the normal stress, weighted with the
corresponding ansatz function of the node. The tangential

FIG. 4. The force density that models the effect of the surface-acoustic
wave in the droplet given in Fig. 5. Panel �a� depicts the nonconservative
part that causes the flow; �b� shows the potential of the conservative part that
contributes only to the pressure.

FIG. 5. A deformed microdroplet, sitting on a flat substrate with pinned
contact points. The deformation is due to an internal pressure and viscous
flow, both caused by the body force density illustrated in Fig. 4. The mate-
rial properties are those of water surrounded by air at room temperature. The
panels depict the computational grid �a�, the flow �b�, and the pressure field
�c�, respectively. Note that the deformation is predominantly caused by the
pressure, which corresponds to the case in which Ca�Bo. In panel �d�, the
free-boundary condition is examined: The normal stress N ·�N equals the
Laplace pressure ��; the tangential stress T ·�N vanishes.
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component vanishes perfectly. The normal component coin-
cides well with the reconstruction estimate of the curvature,
which was described in the previous examples. Thus, the
free-surface boundary condition is indeed satisfied.

In order to prove that our algorithm can likewise pro-
duce stable results in the parameter regime Bo�Ca, we con-
sider a droplet that is deformed only by viscous stress. In
Fig. 6, we used the same nonconservative force that is visu-
alized in Fig. 4, but we omitted the conservative part. Thus,
the pressure was constant and Bo=0. With the same water-
air interface tension as in the previous example, the droplet
would acquire an almost spherical shape. To obtain a com-
parable deformation as in the previous case together with
Ca1, we took an artificial 105 times smaller surface ten-
sion. The initial geometry was the droplet shape of Fig. 5. In
this example, the stress that deforms the free surface depends
much more strongly on the shape of the surface itself. Thus,
the approximation in Eq. �30�, expressing surface-stress
variations by variations of the surface shape, becomes ques-
tionable. As a result, we had to set the numerical parameter �
to a smaller value than in the previous example, in order to
reduce the step size of the surface update. This deteriorates

the convergence rate of the modified Newton method, and
convergence was achieved after 30 iterations.

VII. SUMMARY AND OUTLOOK

In this work, we presented a weak formulation of free-
surface boundary problems in arbitrary coordinate systems.
The steps of the derivation are physically and mathemati-
cally founded using variational techniques for the Stokes
equations and the differential geometry of the surface. We
found that the applicability of different numerical treatments
of the curvature terms depends strongly on the scales of the
system. Our method is designed for Bond and capillary num-
bers assuming values from zero up to unity. Which one is
larger plays no role.

A decisive benefit of our method is the automatic control
of mesh regularity at a free surface. Many algorithms imple-
menting the weak form of the free-surface boundary condi-
tion encounter intrinsic instabilities of the boundary mesh.
Often, it is therefore necessary to create a completely new
mesh after several iteration steps. Our formulation includes a
smooth transition to the behavior of a rubber blanket when
the boundary mesh becomes distorted. This leads to an in-
herent regularization of the mesh without affecting the be-
havior of the free surface.

As another important result, we find that for physical
reasons the geometric variables for the parametrization of the
free surface should be approximated on the same level of
accuracy as the velocity variables. This substantiates numeri-
cal observations reported by Bänsch.28

The quality of our numerical approach is tested by two
analytically solvable examples. The numerical results for the
curvature of the free surface and for the stress that causes the
deformation confirm that the free-surface boundary condition
is indeed satisfied in the implemented weak sense. Moreover,
transcending a weak-sense result, a reliable reconstruction of
the curvature by the normal vectors of the finite-element
sides is feasible. Two further examples illustrate that the ratio
of capillary number and Bond number has only a weak in-
fluence on the stability of the algorithm.

The presented covariant formulation opens the possibil-
ity to utilize the powerful differential geometric description
of free surfaces in finite-element implementations of the
Stokes equations. It thus provides a natural approach to treat
surfaces and interfaces with a richer behavior, such as lipid
vesicles containing bending stiffness, area constraints, and
much more. Many potential applications can be found in the
literature on lipid vesicle geometry, where other expressions
for free-energy contributions of more complicated surfaces
are in use.48–50

Extensions of the presented approach toward moving
contact lines, time-dependent flows, and a three-dimensional
implementation are possible. There are still some hurdles to
be overcome that can be clearly seen in our derivation. One
of them is the principally unknown mutual dependence of the
stress tensor and the surface parametrization, where we in-
troduced the approximation �30�. Another one is the under-
standing of the numeric instabilities caused by the second
variation of the free energy of the surface, see Eqs. �28� and

FIG. 6. A microdroplet of similar shape as in Fig. 5, deformed only by the
viscous stress at the boundary. The flow is driven by the nonconservative
force density of Fig. 4�a� and vanishing conservative part of the force den-
sity. The surface tension � is 105 times smaller than in Fig. 5. This corre-
sponds to the case Bo�Ca. Panel �c� corresponds to Fig. 5�d�.
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�50�. It must be emphasized that these approximations deter-
mine the rate of convergence of the proposed method but
leave the final result unchanged.

These extensions would also provide a solid basis for the
theoretical understanding of particle transport in surface-
acoustic-wave-driven flows.13,51,52
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APPENDIX A: A STATIC DROPLET IN CARTESIAN
COORDINATES

The aim of this appendix is to recall the variational tech-
niques in a simple three-dimensional Cartesian setup before
going to arbitrary coordinates in Appendix B. The argument
is similar to the one given by Cuvelier.24

We describe the special case in which the two-
dimensional free surface A of the fluid can be described by a
height function

A: z = h�x,y� �A1�

which is nonzero over a certain region �x ,y��E. The Stokes
equations for the static situation with a conservative force
f i=−�,i reduce to

0 = − p,i − �,i �A2�

with the solution p�x�= p0−��x�. The undetermined homo-
geneous term p0 will be identified as the Lagrange multiplier
for the constraint of constant volume V=�Edxdyh�x ,y�.

The free energy of the system consists of the surface
integral of the constant surface tension and the volume inte-
gral of the potential

F = ��
A

dA + �
V

�dV = �
E

F�x,y�dxdy �A3�

with

F�x,y� = ��1 + ��xh�x,y��2 + ��yh�x,y��2

+ �
0

h�x,y�

��x,y,z�dz . �A4�

The Euler-Lagrange equation for finding the extremal F by
varying h is then

0 =
�F
�h

−
�

�x

�F
���xh�

−
�

�y

�F
���yh�

�A5�

=��x,y,h�x,y�� − ���x,y� , �A6�

where � is the curvature of A, given by

��x,y� =
�

�x

�xh�x,y�
�1 + ��xh�2 + ��yh�2�1/2

+
�

�y

�yh�x,y�
�1 + ��xh�2 + ��yh�2�1/2 . �A7�

Because the pressure is given by the potential, the Euler-
Lagrange equation is equivalent to the free-surface boundary
condition for a static fluid,

− p�x,y,h�x,y�� + p0 = ���x,y� . �A8�

At this point it is easy to see that p0 plays the role of a
Lagrange multiplier for a volume constraint. Adding the term

�V = ��
E

dxdyh�x,y� �A9�

to F gives an additional constant � in the Euler-Lagrange
equation, just as the pressure offset p0. Because p0 is yet
undetermined, we may identify it with �.

APPENDIX B: VARIATIONAL CALCULUS
FOR THE PARAMETRIZATION OF A FREE SURFACE

In order to prove equality �18�, we express the change of
the free-energy functional �10� by the change of the Jacobi

determinant �a of the surface parametrization. With the in-

finitesimal surface area dA=�ad�, the variation of the sur-
face free energy becomes

�F��t� = �	�
A

�dA
 = �
E

���ad� = �
E

�
��a

�t,�
i �t,�

i d� .

�B1�

The dependence of �a on the tangential vectors follows from
its definition as the determinant of the surface metric. For a
two-dimensional surface, it reads

a = �a11 a12

a21 a22
� =

1

2
����	�a�	a��

=
1

2
����	�gijgklt,�

i t,	
j t,�

k t,�
l , �B2�

where ��	 is the permutation symbol in two dimensions,

��	 = � 0 � = 	 ,

+ 1 � = 1, 	 = 2,

− 1 � = 2, 	 = 1,
� �B3�

which is a relative surface tensor with weight +1. The abso-
lute tensor results as


�	 =
��	

�a
. �B4�

This is analogous to the completely antisymmetric tensor in
three dimensions, described in detail by Aris.26 With the an-
tisymmetric tensor, we obtain the inverse surface metric as

a�	 = 
��
	�a��. �B5�

A formal derivative of �B2� yields

103303-13 Computing stationary free-surface shapes in microfluidics Phys. Fluids 18, 103303 �2006�

Downloaded 02 Nov 2006 to 193.54.88.108. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



�a

�t,�
i = 2gijt,	

j 
��
	�a�� = 2agija
�	t,	

j and �B6�

��a

�t,�
i =

1

2�a

�a

�t,�
i = �agija

�	t,	
j �B7�

which can be inserted into �B1� to give the desired result
�18�.

For a one-dimensional curve in two-dimensional space,
the same formula can be derived, but the notation may be
somewhat confusing. Summation over the single surface in-
dex makes no sense, nevertheless we still have to distinguish
between co- and contravariant relative tensors, i.e.,

a = a11 = gijt,1
i t,1

j , �B8�

a11 = 1/a11 because a11a11 = a�	a�	 = 1. �B9�

The formal derivative then becomes

��a

�t,1
i =

1

2�a
2gijt,1

j = �agijt,1
j 1

a11
= �agijt,1

j a11, �B10�

which completes the result for the one-dimensional surface.

APPENDIX C: INTEGRATION BY PARTS
OF THE TENSION FORCES

In order to see that Eq. �19� follows from Eq. �18�, we
remove the surface covariant derivative from �t,�

i by an in-
tegration by parts and obtain

�F��t� = − �
A

�a�	t,�	
i gij�tj − �

A

�,	a�	t,�
i gij�tj

+ �
�A

��	a�	t,�
i gij�tj , �C1�

where the covariant surface vector �	 is tangential to A and
normal to �A. We can express the surface derivatives t,�	

i by
the tensor b�	 of the second fundamental form of the surface
from Eq. �17� �cf. Aris,26 p. 216�,

t,�	
i = b�	Ni, �C2�

arriving at

a�	t,�	
i = a�	b�	Ni = �Ni. �C3�

We have used the definition of the curvature as the trace of
the tensor of the second fundamental form as in Eq. �16�. For
a two-dimensional surface, this is twice the mean curvature
�=2H=a�	b�	, for a one-dimensional surface we have only
one entry �=a11b11.

As is consistent with the standard literature,26,34 the term
�F from Eq. �18� comprises a curvature term in the normal
direction,

− ��Ni �C4�

and a term accounting for the surface gradient of �. The
space vector

− t,�
i a�	�,	 �C5�

is tangential to the surface. The third term on the right-hand
side of Eq. �C1�, which is an integral over the contact line
�A, vanishes because for a pinned droplet �ti=0 vanishes on
the contact line.

APPENDIX D: INVOKING CONSTRAINTS
FOR THE PERFECT-SLIP BOUNDARY CONDITION

The tangential components of the free-surface boundary
condition correspond to a perfect-slip boundary condition.
When this condition is expressed as a set of constraints for
the DoFs, we obtain one equation like �47� per each DoF at
the free surface. Because the derivatives of the ansatz func-
tions  from �32� generally do not vanish at proximate
nodes, the constraint equations contain nonvanishing weights
for all DoFs that are located on the same element. Therefore,
the constraints for DoFs that are connected to two adjacent
elements create interdependencies of DoFs also on other el-
ements. This is illustrated in Fig. 7�a�. As a result, all DoFs

FIG. 7. A sketch of the interdependencies among the degrees of freedom
�DoFs� located on three elements. The free surface is indicated by the thick
curve. Constrained DoFs are surrounded by small circles. The nodes carry-
ing the corresponding constraining DoFs are surrounded by curves drawn in
the same style. Panel �a� depicts the full interdependencies while in �b� the
DoFs located at vertices depend only on DoFs located at inner nodes. The
missing adjacent DoFs located on the free surface are taken as
inhomogeneities.
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on the free surface depend implicitly on each other.
As a strategy to avoid this full dependency, we replace

the constraint equation of type �44� by

ud = wd + �
e��d

wdeue + �
e��̄d

wdeue
�old�, �D1�

where the sums run over two complementary sets �d and �̄d.
The DoFs in �d contribute to the constraint for ud in the

usual way, while those in �̄d have been substituted by their
old values ue

�old� and thus contribute to the inhomogeneity.
There is some freedom in the choice, which of the partici-
pating DoFs in one element is in �d and which is taken into

�̄d. We found that the combination illustrated in Fig. 7�b�
works well: For the DoFs located at element vertices, we
take the DoFs that belong to adjacent nodes on the free sur-
face as inhomogeneities; all other constraining DoFs are lo-
cated at inner nodes and are not constrained. The DoFs lo-
cated at the second-order nodes on the free surface acquire
their full constraints. When all constrained DoFs are ex-
pressed by unconstrained DoFs, then the resulting constraint
equations will only contain DoFs that are located at inner
nodes of three adjacent elements. This presents a sufficient
decoupling of the constraint equations to yield an efficient
algorithm.

Although the boundary condition given by Eq. �D1� is
not the correct one when the true velocity field has not yet
been determined, it still improves as the velocity field tends
to the proper solution. Thus, there is hope that the correct
boundary condition is established by the successive use of
Eq. �D1� using increasingly good values for the values ue

�old�.
In numerical experiments, the scheme for splitting the inter-
dependencies as illustrated in Fig. 7�b� turned out to be the
only one that works. In the examples of Figs. 5 and 6, it took
about 20 iteration steps to establish the correct boundary
condition from scratch, and 5 iteration steps to reestablish it
after a change of the mesh. This could be readily observed
because after the first iteration step, the velocity field exhib-
ited oscillations at the boundary nodes that ceased during
iteration.
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