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Neuron firing in driven nonlinear integrate-and-fire models
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Abstract

Statistical properties of neuron firing are studied in the framework of a nonlinear leaky integrate-and-fire
model that is driven by a slow periodic subthreshold signal. The firing events are characterized by first passage
time densities. The experimentally better accessible interspike interval density generally depends on the
sojourn times in a refractory state of the neuron. This aspect is not part of the integrate-and-fire model and
must be modelled additionally. For a large class of refractory dynamics, a general expression for the interspike
interval density is given and further evaluated for the two cases with an instantaneous resetting (i.e. no refrac-
tory state) and a refractory state possessing a deterministic lifetime. First passage time densities and interspike
interval densities following from the proposed theory compare favorably with precise numerical simulations.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The firing activity of single neurons constitutes a basic aspect of any neuronal information pro-
cessing and transmission. It still provides challenging problems and this is despite a very large
number of works have been devoted to this objective [1–4].
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The theoretical description of single neuron dynamics has been attempted in the framework of
different models, such as the classical Hodgkin–Huxley, the FitzHugh–Nagumo and the leaky
integrate-and-fire model. Whereas the Hodgkin–Huxley model is based on the conductance prop-
erties of the neuron cell membrane resulting from the nature of sodium and potassium ion chan-
nels, the FitzHugh–Nagumo model is less detailed. It only contains the dynamics of the
membrane voltage coupled to a so-called refractory variable which brings back the membrane
voltage to its rest state after the neuron has fired. Even simpler is the leaky integrate-and-fire mod-
el, which describes the dynamics of the membrane voltage as a random motion under the influence
of a leak current, which is linear in the membrane voltage, until a prescribed threshold is reached.
This event causes the firing of the neuron. After firing, the membrane voltage is reset to its rest
value.

The leaky integrate-and-fire model has been considered as an approximation of both the Hodg-
kin–Huxley [5] and the FitzHugh–Nagumo model [6]. In both cases, however, the resulting total
current is nonlinear in the voltage with three fixed points where the current vanishes, see Fig. 1.
Two of them are attractive and the one in between is repulsive. The smaller of the two stable volt-
age values is considered as the resting voltage. When the voltage increases beyond the unstable
fixed point and reaches the stable fixed point with the larger voltage, the neuron fires and is set
back to the resting voltage. The last step may require some time during which the neuron is in
a refractory state. Being there the neuron is insensitive to the signal and may not fire.

Nonlinear integrate-and-fire models have been considered in different regimes. These can
roughly be categorized by three criteria; whether they are deterministic or stochastic, whether
the applied signal is static or time dependent, and whether this is a sub- or suprathreshold signal,
i.e. whether the signal may drive the membrane voltage above the threshold in absence of random
noise. No single analytic method is known that would yield reliable results in all different regimes.
Either numerical methods have to be used or in specific cases, tailored approximations may be
applied in order to analyze relevant aspects of the dynamical behavior of the model [7–9,4].
The numerical methods either deal with the stochastic differential equations [10,11] or the equiv-
alent Fokker–Planck equation [11–13]. For time dependent Ornstein–Uhlenbeck processes the
first passage time density can also be obtained from an integral equation [14], which provides a
convenient starting point for numerical investigations [15,13].

In the present work we will consider an integrate-and-fire model with a cubic nonlinearity as
was suggested by Tuckwell [1] driven by a subthreshold periodic signal with a long period com-
pared to the characteristic relaxation time towards the resting voltage. The small random contri-
Fig. 1. Schematic view of a typical neuronal current–voltage characteristics. The current vanishes at the resting voltage
Vr, the unstable voltage Vu and the firing voltage Vf, see also the description of the model in Section 2.
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bution to the dynamics of the membrane voltage is represented by Gaussian white noise, which
only rarely drives the voltage to the threshold. A similar model with a bistable force was discussed
by Chow and White [5] for small noise under constant subthreshold forcing. On a time scale which
is long compared to both the typical relaxation time toward the resting voltage and typical refrac-
tory times the interspike interval times, or residence times, i.e. the times between adjacent firing
events, are exponentially distributed. The respective rate was determined by Chow and White
[5] as the Kramers rate [16] describing the noise activated escape from the resting state. Other non-
linear integrate-and-fire models as e.g. described by Fourcaud-Trocmé et al. [17] can be analyzed
by the method presented here.

The envisaged case though is more complicated due to the time dependence of the driving sig-
nal. For the slow subthreshold driving considered here we may follow the line of reasoning that
was applied to the linear leaky integrate-and-fire model [12,13] and outlined in Ref. [18] in more
detail. A related consideration is found in Ref. [19] for a bistable periodically driven system. The
key point is that the essential information about the long time dynamics is contained in an escape
rate, which is time dependent as a consequence of the time dependent signal. This rate at first
determines the waiting time distribution in the resting state and consequently the first passage time
density, i.e. the probability density of the very time at which the firing state is reached for the first
time. In the case of periodic driving, the waiting time density and the first passage time density
depend on the phase of the driving force at the starting time. In order to find the interspike inter-
val density the first passage time density has to be averaged over the starting times resulting from
firing times [20–22] and refractory periods. If the refractory periods last only short time compared
to the typical interspike interval times the density of firing times is given by the firing rate [23].
Therefore, the primary task is to find the firing rate. For weak noise and slow driving frequencies
the time dependent rates are given by the values of the rates at the instantaneous driving strength
[18,12,13,19].

The paper is organized as follows. In Section 2 we specify the model and the parameters to be
considered. In Section 3 the relevant theory is reviewed and general expressions for the first pas-
sage time density and the interspike interval density are presented. In Section 4 we compare these
theoretical results with the simulations for the first passage time density at a particular, fixed ini-
tial phase and of the interspike interval density. The paper ends with a resume given in Section 5.
2. Nonlinear integrate-and-fire model

In the nonlinear integrate-and-fire model the time evolution of the membrane voltage V is given
by a Langevin equation, reading
C
dV
dt0
¼ gðV Þ þ Iðt0Þ þ gðt0Þ; ð1Þ
where C is the membrane capacitance per area, g(V) the current–voltage characteristics of the
membrane, I(t 0) + g(t 0) the injected current resulting from an applied signal I(t 0), which is contam-
inated by the noise source g(t 0), and t 0 the time. Here we will restrict ourselves to periodic currents
of the form
Iðt0Þ ¼ I0 sin X0t0 ð2Þ
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with the amplitude I0 and driving frequency X0. The random contribution to the current is mod-
elled as Gaussian white noise; i.e.
hgðt0Þi ¼ 0; hgðt0Þgðs0Þi ¼ 2D0dðt0 � s0Þ: ð3Þ

According to the Hodgkin–Huxley model the noise strength D0 is inversely proportional to the

number of ion channels per area and, in principle, also a function of the membrane voltage, a
dependence which we neglect here. In principle, other noise sources may also contribute to the
random part of the current.

For the current–voltage characteristics we assume a cubic polynomial in the voltage with three
real stationary points where the corresponding currents vanish, see Fig. 1,
gðV Þ ¼ jðV � V rÞðV � V uÞðV � V fÞ; ð4Þ
where j is a positive constant. The smallest, stable stationary point Vr corresponds to the resting
voltage, the middle one, Vu is unstable and the largest one, Vf is the voltage that causes the neuron
to fire. For the shifted dimensionless voltage x = (V � Vr)/(Vf � Vr) we obtain the Langevin equa-
tion in terms of the rescaled dimensionless time t = j(Vf � Vr)(Vu � Vr)t

0/C
_x ¼ �a�1xðx� aÞðx� 1Þ þ A sin Xt þ
ffiffiffiffiffiffi
2D
p

nðtÞ; ð5Þ

where a = (Vu � Vr)/(Vf � Vr) is a positive parameter less than unity specifying the unstable state,
A = I0/j(Vu � Vr)(Vf � Vr)

2 the dimensionless driving amplitude, X = CX0/j (Vu � Vr)(Vf � Vr)
the dimensionless frequency, D = D0/jC(Vu � Vr)(Vf � Vr)

3 the dimensionless noise strength and
n(t) Gaussian white noise with hn(t)n(s)i = d(t � s). The drift in the Langevin equation follows
from the negative spatial derivative of a potential function U(x, t) = x2/2 � (a + 1)x3/3a + x4/
4a � Ax sinXt. We here consider subthreshold signals such that the potential U(x, t) maintains
its qualitative structure with two minima and a maximum for all times t. This requires that the
signal amplitude A stays below a critical value dependent on the parameter a. The positions of
the extrema of U(x, t) follow as the zeros of the deterministic drift, i.e.
�a�1xðx� aÞðx� 1Þ þ A sin Xt ¼ 0: ð6Þ

These time dependent values will be denoted as the instantaneous rest state xr(t), unstable state
xu(t) and firing state xf(t) taking the values 0, a and 1, respectively, at time t = 0. The values of
the potential at the rest and unstable states are denoted by Ur(t) = U(xr(t), t) and Uu(t) =
U(xu(t), t), respectively. For later use, we introduce the potential curvatures at the rest and unsta-
ble states
xrðtÞ2 ¼
o2Uðx; tÞ

ox2

����
x¼xrðtÞ

xuðtÞ2 ¼ �
o2Uðx; tÞ

ox2

����
x¼xuðtÞ

: ð7Þ
We assume that the barrier height DU(t) = Uu(t) � Ur(t) of the potential, as seen from the rest
state, is always considerably larger than the noise strength D. As a consequence of this assump-
tion, the voltage will only rarely cross this potential barrier. The barrier crossings then are inde-
pendent events, which consequently can be characterized by a firing rate k(t). The time
dependence of the rate results from the time dependence of the signal.



306 M. Kostur et al. / Mathematical Biosciences 207 (2007) 302–311
3. Firing time statistics

Finally, we assume that the period of the signal T = 2p/X is long compared to the relaxa-
tion time towards the rest state, i.e. with the present scaling T� 1. Then, the time dependent
firing rate can be determined in an adiabatic way as the frozen rate out of the respective po-
tential well U(x, t). This will be done in the next subsection. We note that the adiabatic
approximation is only employed to determine the rate. Because the resulting rate may be
smaller than or comparable to the driving frequency X the long time dynamics, which is in-
duced by this rate, need not instantaneously follow the applied signal. The combination of the
adiabatic rate with a nonadiabatic rate dynamics characterizes the semi-adiabatic regime
[18,24]

3.1. Firing rate

The rate, which describes the frequency of transitions per unit time in the frozen potential from
the resting state to the firing state, is approximated by the Kramers rate expression [16]
kðtÞ ¼ xrðtÞxuðtÞ
2p

e�DUðtÞ=D: ð8Þ
This expressions holds with a relative error of less than 7% if the barrier height DU(t) is at least
6D. For lower barriers a more involved, exact rate expression can be given in terms of the inverse
mean first passage time from the resting to the firing state in the frozen potential [16]. It turns out
that the mean first passage time is rather insensitive regarding the precise location of the starting
and target states as long as they are sufficiently remote from the unstable state and the barrier
height is larger than 2D. If the latter condition is not met the time scale separation between fast
intra-well relaxation and rare inter-well transitions gets lost, the mean first passage time does de-
pend on the detailed starting and target conditions and consequently a Markovian rate descrip-
tion of the firing process loses validity.

3.2. Densities of first passage times, firing times and interspike intervals

Within the above specified rate regime the probability P(tjs) that the neuron has not fired up to
time t under the condition that it had been started in the rest state at the previous time s follows
from the rate equation
o

ot
PðtjsÞ ¼ �kðtÞPðtjsÞ for t > s;

PðsjsÞ ¼ 1
ð9Þ
to read
P ðtjsÞ ¼ exp �
Z t

s
ds0 kðs0Þ

� �
for t P s: ð10Þ
The first passage time density g(tjs) then results from the negative derivative of P(tjs) with re-
spect to t
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gðtjsÞ ¼ � o

ot
P ðtjsÞ ¼ kðtÞ exp �

Z t

s
ds0kðs0Þ

� �
for t P s: ð11Þ
From an experimental point of view it would be rather difficult to determine this first passage time
density g(tjs) because it would require to condition the neuron in the resting state at a prescribed
phase of the signal [25]. In the experiment it is easier to observe the interspike interval density
characterizing the statistics of the time intervals between consecutive firing events. This statistics
is given by an appropriate average over the first firing time density. In general, this average though
depends on a possibly existing refractory period after each firing event during which the neuron is
not able to fire. In a first step we disregard this case and assume that after the neuron has fired it
immediately is reset into the resting state. Then each firing event fixes the starting instant for the
next interspike interval. Hence, the interspike interval density is an average of g(s + sjs) over the
properly normalized density of firing events within a period of the driving force. The not normal-
ized density of firing events is given by the product of the firing rate k(s) and the probability pf(t)
to find the neuron in the rest state ready to fire [23]. In the absence of a refractory period this
probability is unity, pf(t) = 1. Therefore one obtains for the interspike interval density [12]
hðsÞ ¼
R T

0
dsgðsþ sjsÞkðsÞR T

0 dskðsÞ
; ð12Þ
where T = X/2p denotes the signal period. The term in the denominator takes care of the normal-
ization of the firing time density.

3.3. Refractory times and interspike intervals

In contrast to the more detailed Hodgkin–Huxley and FitzHugh–Nagumo models, integrate-
and-fire models do not provide information about possible refractory periods. Therefore addition-
al assumptions are necessary to include this aspect into this class of models. We base our treat-
ment on the following hypotheses: (i) The neuron stays in a refractory state for some time after
each firing event. From the refractory state it goes into the rest state from where it is ready to fire
again according to the first passage time density g(tjs). Here the starting time s is given by the time
of the last transition from the refractory to the rest state. The sojourn times in this refractory state
are statistically independent of (ii) the signal, (iii) the previous sojourn times, and (iv) the history
of the previous firing events. Consequently, the refractory state can fully be characterized by the
refractory time density qref(t) to find a refractory period of length t. Finally we require that (v) the
refractory time density has a finite mean value which is short compared to the shortest inverse
rate, i.e.

R1
0

tqrefðtÞdt� mintkðtÞ�1. The first four assumptions imply that the two state process
of consecutive refractory and rest states is a continuous time random walk [26]. The probability
pf(t) that at time t this process is in the rest state follows from the solution of the corresponding
generalized master equation [26], which we will not discuss here. Then the interspike interval den-
sity becomes
hðsÞ ¼
R T

0
dt
R1

0
dsgðt þ sjt þ sÞhðs� sÞqrefðsÞkðtÞpfðtÞR T

0 dtkðtÞpfðtÞ
: ð13Þ
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In the integral the heaviside function h(t) ensures that the firing time t + s in the first passage
time density g(t + sjt + s) never precedes the starting time t + s. Under the assumption (v) the rest
state is realized almost certainly and hence pf � 1 as in the absence of a refractory period. Then
the interspike interval density simplifies to read
hðsÞ ¼
R T

0 dt
R1

0 dsgðt þ sjt þ sÞhðs� sÞqrefðsÞkðtÞR T
0 dtkðtÞ

: ð14Þ
In the case of a deterministic refractory time tref, i.e. for qref(s) = d(s � tref) the interspike interval
density becomes
hðsÞ ¼
R T

0 dtgðt þ sjt þ trefÞkðtÞR T
0

dtkðtÞ
hðs� trefÞ: ð15Þ
Clearly, this density vanishes for times s that are shorter than the refractory times. For a van-
ishing refractory time tref = 0 the previous result (12) is recovered.
4. Comparison with numerical simulations

We numerically implemented the Langevin equation (Eq. 5) with explicit time steps of width
h = 0.01. We chose a = 0.4 for the value of the rescaled unstable voltage, A = 0.01 and
X = 0.01 for the signal amplitude and frequency, respectively, and D = 0.003 for the noise
strength. The resulting ratio of barrier height and noise strength, DU(t)/D varies between the
approximate limits 6 and 9. In this regime the time scales of intra-well relaxations and escape
times are separated by 3–4 orders of magnitude, hence, a rate description of the long time dynam-
ics is justified. With X = 0.01 the signal is much faster than the escape but still sufficiently slow
compared to the intra-well relaxation rate, which is 1 in the used dimensionless units, such that
the frozen Kramers rates can be expected to apply. We estimated the first passage time density
from an ensemble of 5 · 104 simulated Langevin trajectories. Each trajectory was started with
the same signal phase at t = 0 at the rest state x = 0 and stopped when it had reached the value
x = 0.757. The probability of an immediate recrossing of the barrier from there is less than
3 · 10�6 [27] and therefore may safely be neglected. On the other hand, the time to approach
the final firing state xf from this threshold is of the order one and therefore negligibly short com-
pared to the typical time needed to reach the threshold. The times when the threshold was reached
were collected in a histogram and are displayed in Fig. 2.

For the simulation of the interspike interval density a single trajectory suffices. Because it may
contain long episodes of many driving periods without firing events this trajectory has to be quite
long to produce a reliable interval statistics. We started in the rest state at time t = 0 until the
threshold was reached for the first time tf1. In absence of a refractory period, the re-scaled
potential then was reset to the rest state xr(tf) and the process was run with the continuing signal
left unaffected by the firing process until the threshold was reached again at a time tf2. This pro-
cedure was repeated until 105 firing events had occurred. We collected the interspike intervals
tfn+1 � tfn in a histogram which serves as an estimator for the corresponding probability density,
see Fig. 3.



Fig. 2. The histogram (steplike graph) of first passage times resulting from 105 simulated trajectories of the nonlinear
leaky integrate-and-fire model (5) is compared with the first passage time density g(t, 0) given by Eq. (11) (smooth curve)
as a function of firing time t in units of the driving period T = 2p/X for the parameter values a = 0.4, A = 0.01,
D = 0.003. The simulated trajectories start at time t = 0 at x = 0 and are run until the value x = 0.757 is reached. The
two bars on the right side of the figure indicate the largest and smallest occurring statistical errors of the histogram for
density values 0.03 and 0.002, respectively. There are no significant deviations between simulations and theory. The
multi-peaked density slowly decays with the average rate ka ¼

R T
0

dtkðtÞ=T . Superimposed on this decay is a periodic
function with the period T of the driving signal.
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Finally we estimated the interval interspike density in presence of a deterministic refractory
period of length tref = T/2. We chose this long refractory period in order to obtain a clearly visible
effect. In this case we proceeded analogously as in the previous case without refractory period ex-
cept that after a firing event at a time tf we restarted the process only at the later time tf + tref with
the continually running signal phase X(tf + tref). The corresponding histogram of 105 firing events
is compared with the theoretical result, Eq. (15), in Fig. 3.
5. Conclusions

We determined the statistics of firing events in terms of the first passage time density and the
interspike interval density for a nonlinear leaky integrate-and-fire model with a cubic current–
voltage characteristics, which in addition is driven by a periodic subthreshold signal. The random
contribution to the current was assumed to be so small that noise induced transitions from the
resting to the firing state presented rare events. The signal period was chosen long compared to
the local relaxation time in the resting state. Under these conditions the long time dynamics of
the resting state is Markovian and consequently characterized by a rate which is time-dependent
due to the presence of the time dependent signal.

In order to model the influence of a refractory period we have assigned an extra state to this period
which is characterized by a waiting time distribution such that the sequence of refractory and resting
states constitute a continuous time random walk, or in other words, a semi-Markov process.

The agreement between the theory and the numerically precise simulations of the underlying
Langevin equation dynamics describing the leaky integrate-and-fire model turns out to be very
good for both the first passage time density and the interspike interval density. This good agree-
ment holds true also for the two cases with and without a deterministic refractory period.
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Fig. 3. The histogram (steplike graph) of the interspike intervals resulting from a simulation of the nonlinear leaky
integrate-and-fire model (5) is compared with the interspike interval density h(t) given by Eq. (15) (smooth curve) as a
function of the interval duration in units of the driving period T = 2p/X for the parameter values a = 0.4, A = 0.01,
D = 0.003. The two bars on the right side indicate the largest and smallest occurring statistical errors of the histogram
for the density values 0.02 and 0.005, respectively. There are no significant deviations between simulations and theory.
In the upper panel (a), the refractory time tf is zero and in the lower panel (b) it coincides with half the period, tref = T/2.
Most evidently, a finite deterministic refractory time suppresses the immediate succession of firing events. Upon closer
inspection one finds the probability which is removed by the presence of the refractory state from the short intervals
transferred to the longer ones. Local maxima of the interspike interval density are found at integer multiples of the
signal period.
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