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Abstract. We propose a conservative two-dimensional particle model in which

particles carry a continuous and classical spin. The model includes standard

ferromagnetic interactions between spins of two different particles, and a nonstandard

coupling between spin and velocity of the same particle inspired by the coupling

observed in self-propelled hard discs. Because of this coupling Galilean invariance is

broken and the conserved linear momentum associated to translation invariance is not

proportional to the velocity of the center of mass. Also the dynamics is not invariant

under a global rotation of the spins alone. This, in principle, leaves room for collective

motion and thus raises the question whether collective motion can arise in Hamiltonian

systems. We study the statistical mechanics of such a system, and show that, in the

fully connected (or mean-field) case, a transition to collective motion does exist in

spite of momentum conservation. Interestingly, the velocity of the center of mass,

which in the absence of Galilean invariance, is a relevant variable, also feeds back on

the magnetization properties, as it acts as an external magnetic field that smoothens

the transition. Molecular dynamics simulations of finite size systems indeed reveal

a rich phase diagram, with a transition from a disordered to a homogeneous polar

phase, but also more complex inhomogeneous phases with local order interrupted by

topological defects.
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1. Introduction

Spontaneous collective motion, a coordinated motion of an assembly of moving entities

which interact locally without any leader, has recently drawn a lot of attention from the

statistical physics community [1, 2]. Such a phenomenon is present both in biological

systems like motility assays [3, 4, 5, 6] and bacterial colonies [7, 8] or on a larger scale

insects swarms [9] and flocks of birds [10, 11], as well as in engineered systems like driven

colloids [12, 13, 14, 15], droplets [16, 17], or grains [18, 19, 20, 21]. From a theoretical

perspective, such moving individuals are represented as polar self-propelled particles,

that is, particles set in motion by a driving force directed along the heading vector of

the particle. This driving force being balanced by a friction force, a constant speed

is reached in the absence of interaction with obstacles or other particles. Assuming,

as a simplification, that the speed is always constant leads to minimal models like

the Vicsek model [22], where particles also interact with their neighbors so as to align

their velocity vectors, up to some noise. In other words, Vicsek-type models can be

thought of as spin-models [23, 24], where particles move along the direction of their

spin instead of remaining fixed on the node of a lattice. This analogy with spin models

is important because in two dimensions (the dimension in which the Vicsek model is

usually defined), the Mermin-Wagner theorem [25] prevents the existence of long-range

order for equilibrium models of spins that are invariant under global rotation of the

spins, due to the presence of low-energy excitations called spin-waves [26, 27, 28]. The

existence of long-range order in the two-dimensional Vicsek model [22, 23, 29, 30, 31]

thus reveals the intrinsic non-equilibrium character of the model, and to some extent,

of the phenomenon of collective motion itself. The presence of long-range order in

the Vicsek model can be understood as resulting from the continuous evolution of the

neighborhood of a given particle, which successively interact with different particles.

As mentioned above, an important simplification of Vicsek-type models is to identify

the direction of motion with that of the heading vector of the particles. At low enough

density, when the relaxation time of the velocity is short as compared to the typical

time between successive interactions, this approximation is well-justified. In a denser

regime however, as observed in experiments on shaken polar grains [19, 20], velocity

and heading vectors may have different directions, and it is a priori relevant to consider

them as distinct dynamical variables, as done in [32, 33], assuming a suitable coupling

between velocity and heading. In this situation, we are thus dealing with a fluid of

particles carrying a (classical) spin.

When considering both velocity and heading (or spin) variables, the possible

existence of collective motion at equilibrium cannot be immediately ruled out by

standard arguments if spins and velocities are coupled. The first argument (in two

dimension) is the Mermin–Wagner theorem, but its applicability is not granted if spins

interact with velocities, because the system is then no longer invariant under a rotation

of the spins alone. The second argument is that for an isolated system at equilibrium the

momentum is conserved and no spontaneous global motion can emerge. Alternatively,
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boundaries or a substrate may break momentum conservation, but they act as a

momentum sink, also preventing collective motion. These arguments are however valid

only if the standard relation p = mv between momentum and velocity holds. Although

very general, it is well-known that such a relation breaks down when the ‘potential

energy’ (the potential term in the Lagrangian) depends on the velocities as is the case

for charges in magnetic field. A third argument related to the second one, is that at

equilibrium the center-of-mass velocity is conjugated, in a thermodynamic sense, to

momentum—just like temperature is conjugated to energy—and is thus equal to that

of the surrounding medium [34]. Invoking Galilean invariance, one then usually sets

the center-of-mass velocity to zero. However Galilean invariance does not hold in those

above situations where the potential term in the Lagrangian depends on the velocities,

so that the center-of-mass velocity should be a relevant parameter in this case. A natural

question is thus to investigate whether a coupling between velocity and spin variables

could break the Galilean invariance, modify the standard definition of momentum, and

as a result allow for the possibility of collective motion at equilibrium—equilibrium

being understood in the generic sense of the statistical steady-state of a Hamiltonian

system, in the absence of external forcing.

In this paper, we investigate this issue by considering a simple two-dimensional

model of point-like particles carrying a spin and evolving according to a conservative

dynamics coupling spin and velocity in a minimal way. The dynamics is originally

defined in a Lagrangian formalism, from which a Hamiltonian formulation is derived.

A non-standard expression of the momentum of each particle in terms of its velocity

and spin is obtained. We study the statistical mechanics of such a system, and show

that in the fully connected (or mean-field) case a transition to collective motion occurs.

The velocity of the center of mass, which in the absence of Galilean invariance, is a

relevant variable, also feeds back on the magnetization properties: it acts as an external

magnetic field that smoothens the transition and stabilizes non trivial local minima of

the free energy. Molecular dynamics (MD) simulations of finite size systems confirm

the existence of a homogeneous polar phase. Increasing sizes, the system organizes into

domains of collectively moving particles structured around topological defects.

2. The model

2.1. Definition

We start by considering a liquid of XY-spins in two dimensions. The Lagrangian of such

a model is described by L = Lr + Ls with:

Lr =
N∑
i=1

(
m

2
ṙ2
i −

1

2

∑
k(6=i)

U (rik)

)
(1a)

Ls =
N∑
i=1

(
I

2
θ̇2
i +

1

2

∑
k( 6=i)

J (rik)si · sk + h · si

)
(1b)



Coupling spin to velocity: collective motion of Hamiltonian polar particles 4

where rik ≡ |rk− ri|, with ri, θi and si, denoting the position, the angle and the spin of

each particle respectively (the dot on top of a variable denotes time derivative). Note

that the spin si is defined as si = ê(θi) ≡ cos θiêx + sin θiêy. The other parameters

appearing in the Lagrangian are the mass m of the particle, their moment of inertia I

associated to spin rotation, the coupling J = J0j(rik) between spins, the external field

h, and the interaction potential U (rik) between particles (e.g., hard sphere or Lennard-

Jones potential). With the model as it stands, there is coordination of spins at low

temperature. However there is no coupling between spin and particle motion, so that

no collective motion can emerge. To couple the motion of the particles to the spin we

add to the Lagrangian a term

Lsv = K
N∑
i=1

si · ṙi , (2)

where K is a coupling constant between spin and velocity, which is expected to favor

the alignment of the velocity of particle i to its own spin si. Apart from the fact that

it should contribute to align velocities when spins align –although we shall see that the

effect is really indirect and counter-intuitive– this term is motivated by the observation

of such self-alignment in real systems of self-propelled grains [32] and has been identified

as a key ingredient for the dynamics of self propelled discs [33].

Leaving aside the potential term U , although we shall reintroduce it when

moving to the molecular dynamics simulations, our starting point is thus the following

dimensionless Lagrangian:

L =
N∑
i=1

(
1

2
ṙ2
i +

1

2
θ̇2
i + (K ṙi+h) · si +

1

2

∑
k( 6=i)

j(rik)si · sk

)
, (3)

where we used the following redefinitions

r/
√
I/m→ r, t/

√
I/J0 → t, (4a)

K√
mJ0

→ K,
h

J0

→ h, L/J0 → L. (4b)

The parameter K now controls the strength of the alignment between spin and velocity.

The Euler–Lagrange equations then read

r̈i = −Kθ̇iê⊥,i +
∑
k(6=i)

∂j(rik)

∂ri
cos θik (5a)

θ̈i = (K ṙi + h) · ê⊥,i +
∑
k(6=i)

j(rik) sin θik, (5b)

where θik = θk − θi and ê⊥,i is a unit vector perpendicular to the spin, defined as

ê⊥,i = ê(θi + π
2
). Finally, we reformulate the dynamics in the Hamiltonian formalism.
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The momenta pi and ωi conjugated to the positions ri and angles θi read:

pi =
∂L

∂ ṙi
= ṙi +Ksi, (6a)

ωi =
∂L

∂θ̇i
= θ̇i. (6b)

The spin of the particle acts as an internal potential vector and only for K = 0 is the

momentum equal to the velocity. The Hamiltonian is obtained by the usual Legendre

transform of the Lagrangian

H =
N∑
i=1

(
piṙi + ωiθ̇i

)
− L. (7)

Expressing ṙi and θ̇i in terms of the conjugate variables pi and ωi, one finds, discarding

an irrelevant constant term:

H =
N∑
i=1

(
p2
i

2
+
ω2
i

2
− (Kpi + h) · si −

1

2

∑
k(6=i)

j(rik)si · sk

)
. (8)

The equations of motion follow:

ṙi =
∂H

∂pi
= pi −Ksi (9a)

ṗi = −∂H
∂ri

=
∑
k(6=i)

∂j(rik)

∂ri
cos θik (9b)

θ̇i =
∂H

∂ωi
= ωi (9c)

ω̇i = −∂H
∂θi

= (Kpi + h) · ê⊥,i +
∑
k( 6=i)

j(rik) sin θik. (9d)

Let us note that, up to a constant the Hamiltonian can be formally written as

H =
N∑
i=1

(
ṙ2
i

2
+
ω2
i

2
− h · si −

1

2

∑
k(6=i)

j(rik)si · sk

)
. (10)

Although this is not a proper formulation in terms of the canonical variables, it shows

that written in terms of kinetic and potential energy, the Hamiltonian takes a form

similar to the one of a standard liquid of particles carrying an XY-spin. The subtlety

hidden in this misleadingly simple formulation is that ṙi is not proportional to pi.

2.2. Continuous Symmetries

Taking advantage of the Lagrangian formulation, we apply Noether’s theorem to obtain

the conserved quantities of the dynamics, associated to the continuous transformation

under which the Lagrangian is invariant.
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First of all, the Lagrangian is invariant under time and space translation, so that

the dynamics conserves the energy E = H and the generalized linear momentum P

obtained by summing (6a) over all particles:

P = NV +KM, (11)

where V is the center of mass velocity and M =
∑N

i=1 si is the total magnetization of

the system. This simple but essential formula relates the total momentum of the system

to the collective motion, described by the velocity of the center of mass, and the total

magnetization of the system. Although the generalized linear momentum considered

here is not proportional to the velocity of the center of mass, this conservation law is

in stark contrast with most two-dimensional models for collective motion, for which

momentum is not conserved.

The equations of motion are not invariant under a rotation of the system (i.e., a

global rotation of the position of particles), as can be seen from (3), where the scalar

product is not invariant, as the spins do not rotate, and also because of the presence of

the external field h.‡
Finally, let us stress a significant difference with the standard XY-model [26, 27, 28].

In the present case, there is no symmetry under rotation of the spins alone. Accordingly

spin waves are not slow modes of the dynamics and the Mermin-Wagner theorem (at

least in its standard form) does not apply, opening the way for possible order at long

distance.

2.3. Time reversibility

Interestingly the dynamics is not time reversible. Applying the transformation t→ −t:

ri → ri, ṙi → −ṙi, r̈i → r̈i, (12a)

θi → θi, θ̇i → −θ̇i, θ̈i → θ̈i (12b)

to the Euler-Lagrange equations (5), they transform into

r̈i = Kθ̇iê⊥,i +
∑
k(6=i)

∂j(rik)

∂ri
cos θik (13a)

θ̈i = (−K ṙi + h) · ê⊥,i +
∑
k( 6=i)

j(rik) sin θik, (13b)

which differ from the original ones [Eq. (5)], unless K = 0. Note that although the

Hamiltonian is symmetric under time reversal, it does not imply time reversibility of

‡ For h = 0, the invariance is however recovered under a transformation in which the spins are

rotated together with the positions of the particles. In that case a supplementary conserved quantity

is L = Lz +
∑N

i=1 ωi with Lz =
∑N

i=1 êz · (ri × pi) the usual angular momentum. In practice, even

when the field h = 0, this rotational invariance is broken because of boundary conditions.
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the trajectories because pi transforms under time reversal into p′i = −pi + 2Ksi, as can

also be checked directly from Eq. (9).

The invariance of the trajectories can be recovered using the more general

transformation t → −t and si → −si. In this case, one has pi → −pi and both

the Hamiltonian and the trajectories are invariant. The invariance under this more

general transformation can be interpreted as a generalized form of microreversibility.

At a heuristic level, this suggests that a generalized form of detailed balance, associated

to a uniform measure in the micro-canonical ensemble, may hold.

2.4. Galilean Invariance

Also central in classical mechanics is the Galilean invariance, which states that the

equations of motion are identical in different coordinate systems moving with constant

velocity with respect to each other. Applying a Galilean transformation to the Euler-

Lagrange equations (5)

r′i = r−V0t, ṙ′i = ṙi −V0, r̈′i = r̈i, (14)

while keeping θi and its derivatives unchanged, one finds in the new frame, dropping

primes to lighten notations,

r̈i = Kθ̇iê⊥,i +
∑
k(6=i)

∂j(rik)

∂ri
cos θik (15)

θ̈i = KV0 · ê⊥,i + (K ṙi + h) · ê⊥,i +
∑
k( 6=i)

j(rik) sin θik, (16)

where the extra term KV0 · ê⊥,i in the last equation breaks Galilean invariance.

This absence of Galilean invariance is actually connected to the fact that the total

momentum P is not proportional to the velocity V of the center of mass, as can be seen

from the following argument. The term responsible for the broken Galilean invariance

is the term Lsv coupling spin and velocity [Eq. (2)]. Let us momentarily consider a

general coupling term Lsv, assuming simply that it depends only on the spins si and the

velocities ṙi, i = 1, . . . , N . Then the total momentum reads

P = NV +
N∑
i=1

∂Lsv

∂ ṙi
(17)

and is thus generically not proportional to the velocity of the center of mass. However, if

the coupling term Lsv satisfies Galilean invariance, one has Lsv(ṙi−δV0, si) = Lsv(ṙi, si),

where δV0 is the velocity shift associated to an infinitesimal Galilean transformation,

resulting in
N∑
i=1

∂Lsv

∂ ṙi
= 0 (18)
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so that one recovers P = NV. In the following, when discussing the role of the broken

Galilean invariance, we may thus consider the following coupling term,

Lsv =
N∑
i=1

K
(
si −

η

N

N∑
k=1

sk

)
· ṙi. (19)

For η = 0, this term corresponds to the coupling defined in Eq. (2), while for η = 1,

Galilean invariance is recovered and P = NV.

2.5. Motion of a single particle

To gain some intuition on particle motion, it is useful to analyze the equations of motion

for a single and free particle (j = 0,h = 0). The individual momentum is conserved,

p(t) = p0. Taking the temporal derivative of Eq. (9c) and using Eq. (9d), one gets

θ̈ = Kp · ê⊥ = −Kp0 sin θ, (20)

where the coordinate system has been set such that x̂ = p̂0/p0, and p · s = p0 cos θ.

One recognizes the equation of motion of a pendulum: the spin s oscillates around the

direction p̂0 with a frequency
√
Kp0. The velocity of the particle follows from Eq. (9a),

as illustrated on Fig. 1 in the case K = 1. Using the conservation of the kinetic

momentum L = −y(t)p0 + θ̇ (see footnote 1), one finds y(t) = y(0) + (θ̇(t) − θ̇(0))/p0.

pi

si
ê⊥,i

ṙi

pi

si
ê⊥,i

ṙi

−1

0

1

2

−π −π/2 0 π/2 π

v
x

θ

−1

0

1

−π −π/2 0 π/2 π

v
y

θ

Figure 1. Dynamics of a single spin in the cases Kp0 > 1 (top) and Kp0 < 1 (middle).

The momentum pi = p0 is conserved, the spin si oscillates around the direction given

by pi with a frequency
√
Kp0. The velocity ṙi is then entirely set by Eq. (9a). The

plots in the bottom row show that only the x-components of the trajectories differ,

whereas the y-components oscillate on the same trajectory.
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The motion of the particle, perpendicular to the direction of its momentum, follows

the periodic motion of θ̇. The dynamics along the direction of the momentum is more

complicated. From Eq. (6a) one has ẋ = p0 −K cos θ. For small enough K , K/p0 < 1,

the particle always moves in the direction of its momentum. However, for larger K,

the motion strongly depends on the dynamics of θ; and, for small θ, that is when the

spin points to a direction close to that of the momentum, the particle moves into the

opposite direction! This counter-intuitive behavior is deeply rooted in the conservation

of p = ṙi + Ks. In the following we shall see that the constraints imposed on the

dynamics by the conservation laws, together with the coupling between the spins and

the velocities, lead at the mean-field level to the onset of collective motion.

3. Statistical description

3.1. Distribution of microscopic configurations

Starting from the Hamiltonian formulation of the model a Liouville equation can

be written for the probability density function of the phase-space point C =

(rN , θN ,pN , ωN ). It follows that at equilibrium, the probability distribution is a function

of the conserved quantities of the dynamics, namely the energy E and the linear

momentum P . In the microcanonical ensemble, the conserved quantities cannot be

exchanged with the environment; they have constant values E0 and P0 respectively, and

the distribution P(C) is given by

Pmc(C) =
1

Ω
δ(E − E0)δ(P−P0), (21)

where Ω is the microcanonical partition function, defined by normalizing Pmc(C) to 1.

In other words, all configurations with the same values of the conserved quantities are

equally probable.

In practice, it is more convenient from a computational viewpoint to work in the

canonical ensemble where the conserved quantities are exchanged with a reservoir. The

probability measure in the canonical ensemble is then given by

P(C) =
1

Z(β,α)
e−β(E−α·P), (22)

where β and α are intensive control parameters of the reservoir that determine the

thermal averages of E and P (β denotes, as usual, the inverse temperature).

3.2. Computation of average moments

The distribution (22) of the microscopic configurations can be written more explicitly

as

P (rN , θN ,pN , ωN ) =
1

Z(β,α)

N∏
i=1

φ(pi, θi, ωi)
∏
i<k

ψ(rik, θik) (23)
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with

φ(pi, θi, ωi) = exp
[
−β
(p2

i

2
+
ω2
i

2
− h · si − (α+Ksi) · pi

)]
ψ(rik, θik) = exp

(
βj(rik) cos θik

)
, (24)

and where

Z(β,α) = Zω

∫
dθNZp(θ

N ) Zr(θ
N ) (25)

is the partition function, with

Zω =
N∏
i=1

∫
dωi e

−β ω
2
i
2 (26)

Zp(θ
N ) =

N∏
i=1

∫
dpi e

−β
(

p2
i
2
−(α+Ksi)·pi−h·si

)
(27)

Zr(θ
N ) =

∫
drN

∏
i<k

eβj(rik) cos θik . (28)

From the distribution (23), one can easily compute the first and second moments of the

momenta pi and ωi. For the first moments, one finds 〈ωi〉 = 0 and

〈pi〉 = α +K〈si〉. (29)

Using Eq. (6a) in Eq. (29) yields α = 〈ṙi〉. Taking the sum over all particles and dividing

by N then leads to

α = 〈V〉. (30)

This relation, which shows that the intensive parameter α associated to the conservation

of momentum is the averaged velocity of the center of mass is not specific to the present

model. It is a general property of equilibrium systems [34]. However, in the presence of

Galilean invariance one can arbitrarily set 〈V〉 = 0 and safely ignore α in the partition

function. Here because of the broken Galilean invariance we shall on the contrary keep

it as a true and independent intensive thermodynamic parameter. Inserting Eq. (30)

into Eq. (29), we end up with

〈pi〉 = 〈V〉+K〈si〉, (31)

which can be seen as a ‘local’ counterpart of Eq. (11).

For the second moment, one finds a generalization of the equipartition relations,

with kT = β−1,

〈ω2
i 〉 = kT, (32)(

〈p2
i 〉 − 〈pi〉2

)
−K2

(
〈s2
i 〉 − 〈si〉2

)
= 2kT. (33)

Hence not only are the average values of momentum and spin related, as could have

been anticipated from Eq. (11), but so are also their fluctuations. Note however that

the temperature is not proportional to the total kinetic energy because of the coupling

between the translational velocities and the spins.
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3.3. Phase transition in the fully connected model

We now study the behavior of the mean magnetization as a function of temperature

and center of mass velocity (or equivalently, α). To keep the discussion at a simple

enough level, we focus on the fully connected geometry, which is akin to a mean-field

approximation (note that the momenta pi and spins si however remain two-dimensional

vectors). In this case, the interaction amplitude j(|ri − rk|) is simply a constant,

independent of the distance between particles. To ensure that energy remains extensive,

we take this constant to be equal to 1/N . The interaction term can then be rewritten

as follows

1

N

N∑
i=1

∑
k( 6=i)

si · sk =
1

N

N∑
i=1

si ·
( N∑
k=1

sk − si

)
= Nm2 − 1, (34)

where m(θN ) = N−1
∑N

i=1 si is the magnetization per spin. Disregarding the constant

term (which amounts to a shift in the energy reference), the integrations of Eqs. (26),

(27) and (28) over ωN , rN and pN are readily computed, yielding

Z(β,α, N, V ) =
(2π

β

) 3N
2
V N e

β
2
N (K2+α2) Zθ (35)

where V is the volume occupied by the system. The integral that remains to be

computed is

Zθ =

∫
dθN e

1
2
Nβm2+Nβm·(Kα+h), (36)

where one recognizes the mean field partition function of the conventional XY-model in

the presence of an external field heff = Kα+ h [35]. Following standard techniques (see

Appendix A), one finds

Zθ =
Nβ

2π

∫
du1du2 e

−NβF(u), (37)

where the function F(u) is given by

F(u) =
u2

2
− 1

β
ln
[
2πI0

(
βγ(u)

)]
(38)

with In, the modified Bessel function of order n and γ(u) = |γ(u)| = |Kα + h + u|.
In the large N limit, the integral in Eq. (37) can be computed using the saddle point

approximation, yielding to exponential order

Zθ ∼ e−NβF(u∗) (39)

where the saddle-point u∗(α, β,h) is given by

∂F
∂u

(u∗) = u∗ − I1(βγ(u∗))

I0(βγ(u∗))
γ̂(u∗) = 0 (40)



Coupling spin to velocity: collective motion of Hamiltonian polar particles 12

−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

〈m
x
〉

kT

αx = 0.3
αx = 0.1
αx = 0.01
αx = 0

Figure 2. Magnetization of the fully connected model, in the absence of external field

(h = 0), but with non-zero effective field heff = Kα. Solid curves are obtained from

numerically minimizing F(u). Parameters are K = 1, αy = 0.

with γ̂(u∗) the unit vector γ(u∗)/γ(u∗). Using Eq. (35) and Stirling’s approximation,

the free energy density f then reads

f (β,α, N/V ) := −kT
N

ln
Z(β,α, N, V )

N !

∼ F(u∗)− 1

β

(3

2
ln

2π

β
− ln

N

V
+ 1
)
− α2

2
. (41)

It is a function of intensive variables only. Finally the average magnetization 〈m〉 per

particle is:

〈m〉 = − ∂f
∂h

= −∂u∗

∂h

∂F
∂u

(u∗)− ∂F
∂h

(u∗). (42)

Since ∂F/∂u(u∗) = 0, we end up with 〈m〉 = −∂F
∂h

(u∗). Combining this last result with

the definition of γ and Eqs. (38) and (40), we get that 〈m〉 = u∗. Hence 〈m〉 can be

obtained from the self-consistent equation (40), simply replacing u∗ by 〈m〉.
Using ∂ lnZ

∂β
= −〈H〉 + α · 〈P〉, we also obtain the average energy per particle

〈e〉 = 〈H〉/N :

〈e〉 =
3

2β
+

α2 − u∗2

2
− h · u∗. (43)

Eq. (40) can be solved numerically, the result being depicted in Fig. 2 for the case K = 1

in the absence of external field (h = 0). Without loss of generality we choose α in the

x-direction. When α = 0, there is a phase transition from an isotropic to a magnetized

phase at kTc = 1/2. For nonzero values of α, we find in the upper half of the figure

smooth magnetization curves which demonstrate that the coupling between the spins

and the particle velocities is encompassed into an effective field heff = h +Kα: as long

as K > 0, the average velocity of the center of mass acts as an external field, polarizing

the spins. This nontrivial effect of the center-of-mass velocity is directly related to the

loss of Galilean invariance. Actually, starting from the more general coupling term given
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in Eq. (19), one finds that the effective external field heff is changed into§

heff = h +K(1− η)α, (44)

so that the contribution from α to the effective field vanishes for η = 1, when Galilean

invariance is recovered.

In its lower half, Figure 2 shows further solutions. These are also obtained

from minimizing F(u), but here the minima are local ones. In these solutions, the

magnetization M is opposite to the center-of-mass velocity α. We can already anticipate

that these local minima are essential to the low temperature physics of the model in the

microcanonical ensemble: for a system with vanishing fixed total momentum, Eq. (11)

imposes 〈m〉 = −Kα and the system will select the minima for which α and 〈m〉 are

anti-aligned.

Although observing an ordering transition in a mean-field framework usually does

not come as a surprise, let us emphasize that the present transition is non-standard even

at mean-field level, in the sense that collective motion cannot be observed in equilibrium

systems where momentum is either conserved or exchanged with a substrate, as long

as the relation P = NV is valid. The transition clearly relies on the coupling between

spin and velocity, and disappears for K = 0.

Also, the above results only hold for the fully-connected model, that is at the

mean-field level. In the case of the standard two-dimensional XY-model, it is very

well known that mean-field approximations erroneously predict a transition towards

a true long-range ordered phase at low temperature, which in two dimensions is

replaced by the celebrated Berezinskii–Kosterlitz–Thouless transition towards a quasi-

long-range ordered phase, with zero magnetization, but infinite correlation length of its

fluctuations [26, 27, 28]. Physically, long-range order in the two-dimensional XY-model

is destroyed by the low-energy spin-wave excitations associated with the invariance of

the dynamics under a continuous rotation of the spins. In the present case, we have

seen in section 2.2 that this symmetry is absent for K 6= 0 when globally rotating the

spins alone. One can however argue that a more general transformation, rotating both

the spins and the velocities, should be applied to restore the Mermin-Wagner theorem.

When a reservoir imposes α, or when the conserved momentum has a fixed value P0 6= 0,

isotropy is actually broken. Yet, when P0 = 0, the system is isotropic and long wave-

length excitations involving spins and velocities may be expected to destroy long-range

order.

§ To be more specific, the function F(u) is also changed into

F(u) = c
u2

2
− 1

β
ln
[
2πI0

(
βγ(u)

)]
with c = 1 + η(2− η)K2 and γ(u) = (1− η)Kα + h + cu.
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4. Molecular Dynamics simulations

In order to perform numerical simulations of the dynamics described by the equations of

motion (9), one needs to specify the spatial dependence of the ferromagnetic interaction.

Doing so, one notices that the interaction not only leads to alignment of the spins but

also to attraction/repulsion of interacting spins, depending on their relative orientations.

Typically, spins of similar direction cluster together while oppositely pointed spins repel

each other. An aligned phase is thus expected to end up with all particles being very

close together. In order to avoid this undesired behavior, we add a repulsive potential

U (rik) as introduced in Eq. (1a), which translates into a repulsive force term in Eq. (9b).

In the following, we set

j(r) = (1− r)2 and U (r) = 4(1− r)4 (45)

for r ≤ 1 and j(r) = U (r) = 0 for r ≥ 1. The interaction range is thus one unit length

and the two interactions are of the same magnitude for r = 1/2. We perform simulations

in the microcanonical ensemble in square boxes of size L × L, with periodic boundary

conditions and a fixed density of particles ρ = N/L2 = 3.55; N = [256, 500, 1000].

The equations of motion are integrated using a standard fourth-order Runge–Kutta

approximation. The total energy E0 and momentum P0 are set by the initial condition.

In the following, we shall always start from initial conditions where all positions and

spins orientations are random, and all velocities, both ṙi and ωi, are zero. Hence in

the initial conditions the total magnetization M0 = 0 and the velocity of the center of

mass V0 = 0, so that the total momentum P0 = 0. Typically, starting from such an

initial condition, the system reaches a disordered steady state. However, from the phase

transition diagram in Fig. 2, one would expect that a system prepared with low enough

energy will also be at low temperature and will thus evolve towards an ordered state

with nonzero magnetization 〈m〉. If this were the case, because P = 0 is conserved,

the system would acquire a finite velocity of its center-of-mass V = −K〈m〉: collective

motion would set in spontaneously.

We first look for the ground state for different values of K . We perform slow

annealing of the system by removing rotational kinetic energy at a constant rate: every

100 integration steps, a factor ζ < 1 is applied to all ωi. We checked that the annealing

rate was small enough to ensure that we observed (statistically) the same result for

different rates. We also checked that the total momentum P remained null during the

annealing procedure. Figure 3 displays the final states obtained from this annealing

procedure in a system of N = 500 particles. One observes quite a rich phase behavior:

for K = 0.1 all spins are indeed aligned as in panel (a) and, as anticipated, all velocities

align in the opposite direction, so that collective motion is present. For K = 0.3, 0.5,

0.7, and 1 we observe three kinds of different final states occurring at random, which

are depicted in panels (b) to (d). They have large-scale structure in their magnetization

field, such that the total magnetization vanishes; as a result V = 0: the velocities

fluctuate independently, and no global motion takes place. The three states in Fig.3b–d
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a

b

c

d

Figure 3. (a) Ground state for K = 0.1. (b–d) Candidates for ground states for

K = 0.3, 0.5, 1.0. Black dots indicate particle positions in the x, y-plane; left: blue

arrows are ṙi; right: red arrows are si. N = 500, ρ = 3.55, ζ = 0.9999.

can be seen as candidates for the ground state, representing local minima in a free-

energy landscape. The frequency at which one of these states is picked by the annealing

process depends on K and on the number of particles N . For N = 500, we could only

find the magnetized ground state for K = 0.1.

We now investigate how magnetization resist thermal fluctuations. Figure 4 displays

the phase diagram for systems with zero total momentum P = 0. To obtain it, we slowly

anneal the system from a disordered initial state with energy E0, but stop the annealing

at a beforehand chosen value of E , which is then conserved. We then wait for the system

to relax and start to average the magnetization. One can see that for sufficiently small

K magnetization survives on a finite range of energy.

Focusing on the case K = 0.1, for which collective motion is indeed observed (at
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Figure 4. Parameter-dependence of the average magnetization in the steady state as

a function of the prescribed energy E. Values of K run from 0.01 to 0.5 in equal steps.

In all simulations P = 0, N = 256, ζ = 0.999, ρ = 3.55.
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Figure 5. Average magnetization in microcanonical simulations, as a function of the

measured temperature. Colors/linestyles correspond to different momenta, symbols

indicate system sizes: N = 256 (square), 500 (circle), 1000 (triangle). In all simulations

K = 0.1, ζ = 0.99, ρ = 3.55.
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Figure 6. Curves of constant P in the fully connected model. K = 0.1, h = 0, αy = 0,

Py = 0.
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least in the finite size system), we investigate the transition towards the disordered

state at high energy. The simulation data is plotted in Fig. 5 for different system sizes

and different momenta. Here, for the purpose of comparison with the canonical case, we

choose to plot the magnetization as a function of kT , where the temperature is measured

using the rotational velocity fluctuations, as prescribed by Eq. (32). A crossover from

low to high values of the magnetization is clearly visible when temperature is decreased.

To better compare it with the canonical calculation of Sec. 3.3 above, although no

quantitative agreement is to be expected due to the finite range of spin interactions

j(r) and the addition of the repulsive potential U (r), we invert the canonical relations

〈e〉(β,α) and 〈P〉(β,α) from Eqs. (29) and (43). We such obtain in Fig. 6 the

magnetization computed in the canonical ensemble as a function of (E , P) or more

conveniently (β,P ). For finite P continuous branches of solution relate the disordered

state at high temperature to the homogeneous magnetized state at low temperature.

These branches resemble very much those obtained from the microcanonical simulations

(Fig. 5). The zero-momentum case is very peculiar: there is a finite range of energy, or

kT , where no solutions with homogeneous magnetization exist. Because of finite-size

effects, this peculiarity could not be captured in the microcanonical simulations. Also,

from the data in Fig. 5 it is not yet clear whether the magnetization at kT > 0 survives

the limit of large systems, N → ∞. The transition shifts more and more to the left,

but more systematic investigation would be necessary to know whether it converges to

a nonzero critical temperature. As a first step we looked at finite size effects, focusing

on the ground state. We ran the annealing protocol on ten systems of size N = 2000,

for respectively K = 0.1 and 0.3. By increasing the system size, the fully ordered state

is now replaced by an inhomogeneous state with zero total magnetization, in a way

similar to the effect of increasing K at a given system size (Fig. 3b–d). The crossover

size is larger for smaller K . Given that for K = 0 no long range order is expected,

these observations suggest that long-range order may not survive in the thermodynamic

limit for all K . Obtaining the precise scaling in K , temperature and system size would

require a deeper analysis, both theoretically and numerically, which is beyond the scope

of the present work.

5. Discussion and conclusion

In order to discuss the above observations, let us recall that the Hamiltonian can be

interpreted as the sum of the kinetic and potential energies, in which the peculiarity

of the present model is entirely encoded in the unusual relation ṙi = pi − Ksi (see

Eq. (10) in section 2.1). To obtain low energy states, the system should (i) minimize

its kinetic energy, thus decrease all |ṙi| and generate small |V| states; (ii) align its spins,

thus favoring states with large |M|. However this is incompatible with the constraint

P = NV + KM = 0. In particular, because the constraint imposes |V| = K |M|, the

spin alignment potentially leads to large kinetic energy. This dynamical frustration is

all the more important that K is large. This is why decreasing K is a way to favor
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ordered states at low energy. At larger K , the system selects zero magnetization states,

at the price of generating bend and splay in the spin field. Also the larger the system,

the smaller are these distortion. This is why only small K and small size system exhibit

homogeneously ordered phases.

In summary, we have proposed in this paper a conservative model of particles in

which velocities and spins are coupled. Starting from a Lagrangian formulation and

deriving from it the Hamiltonian one, we obtained using the symmetries of the problem

that the total (generalized) linear momentum is conserved but is no longer proportional

to the center-of-mass velocity. We then studied the effect of this important change

on spin statistics and on collective motion. Our main findings are that (i) collective

motion sets in starting from an immobile system, provided that the spins are able to

align ferro-magnetically as observed in particular in the fully connected geometry, or in

small enough systems, and (ii) the parameter α = 〈V〉 thermodynamically conjugated

to linear momentum acts as an external magnetic field on the magnetization.

More generally, the main interest of the present model is to show that collective

motion, albeit perhaps of a nonstandard type, is possible even for conservative models,

provided that spins and velocities are coupled. Although it is hard to imagine a physical

realization of the present model, the latter however has the virtue of showing that, at

least at a conceptual level, energy dissipation is not a necessary ingredient for collective

motion. Also, in a spirit similar to that of [24] it brings the transition to collective

motion on a theoretical playground where a number of tools have been developed to

characterize phase transitions.

The present paper aimed at introducing the model, discuss its symmetries and the

crucial role of the broken Galilean invariance. As such, it remains very preliminary. We

have only looked at the mean field scenario, and illustrated the model behavior on a few

MD simulations. A number of perspectives can be mentioned. Obviously one would like

to investigate more systematically the phase diagram of the system and the existence

of a phase transition in the infinite size limit. Also, it would be interesting to make

progress in the direction of the theoretical analysis of the model in finite dimension. In

particular two limits of interest are K → 0, which corresponds to the intricate physics

of the XY-model and its Berezinskii-Kosterlitz-Thouless transition, and η → 1, where

Galilean invariance is recovered. Perturbative approaches using K and/or η as small

parameters could be a way to tackle this theoretical analysis. Besides, we have not yet

explored the possibility that the model might be invariant under a more complicated

transformation than the Galilean one, in analogy to the Lorentz transform that arises in

the context of electromagnetism. Whether such a transformation exists is however far

from clear; in electromagnetic systems, the invariance under the Lorentz transform is

only obtained when considering relativistic mechanics, while our model remains within

the realm of Newtonian mechanics.
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Appendix A. Computation of the mean-field partition function

In this appendix, we provide the detailed derivation of the mean-field free energy F(u)

given in Eq. (38). Starting from Eq. (36), we need to compute the following integral,

Zθ =

∫
dθN e

1
2
Nβm2+Nβm·(Kα+h) (A.1)

To write the exponential function as a linear function of m we use the Hubbard–

Stratonovich transformation,

eb
2/2a =

√
a

2π

∫ ∞
−∞

du e−
1
2
au2+bu. (A.2)

Considering for instance the x-component, and setting b = Nβmx and a = Nβ, one gets

e
1
2
Nβm2

x =

√
Nβ

2π

∫ ∞
−∞

du1e
− 1

2
Nβu21+Nβmxu1 . (A.3)

Combining the two directions x and y yields for the partition function, using the notation

u = (u1, u2),

Zθ =
Nβ

2π

∫
du1du2dθ

N e−Nβ(u2

2
−γ(u)·m), (A.4)

where

γ(u) ≡ Kα + h + u. (A.5)

Up to a shift on the variable θi (that is irrelevant since integration is on the circle), the

scalar product γ(u) ·m can be expressed as

γ(u) ·m =
1

N

∑
i

γ(u) · si =
1

N

∑
i

γ(u) cos θi (A.6)

where γ(u) = |γ(u)|. We end up with

Zθ =
Nβ

2π

∫
du1du2 e

−Nβu2/2

N∏
i=1

∫ π

−π
dθie

βγ(u) cos θi (A.7)

Denoting I0(x) the modified Bessel function of order 0:

I0(x) =
1

2π

∫ π

−π
dθ ex cos θ (A.8)

we finally get Eqs. (37) and (38) of the main text.
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