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Elastic fluctuations as observed in a confocal slice
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Abstract. - Recent confocal experiments on colloidal solids motivate a fuller study of the pro-
jection of three-dimensional fluctuations onto a two-dimensional confocal slice. We show that the
effective theory of a projected crystal displays several exceptional features, such as non-standard
exponents in the dispersion relations. We provide analytic expressions for the effective two-
dimensional elastic properties which allow one to work back from sliced experimental observations
to three-dimensional elastic constants.

Optical techniques, including scattering and micros-
copy, have long been used to extract detailed static and
dynamic information from soft condensed matter systems.
They are in many ways complementary – scattering being
most suitable for examining the fluctuations in Fourier
space [1], giving information on the mode structure for
uniform systems; microscopy gives the best account of the
real space structure of a medium [2] and is particularly use-
ful in the study of heterogeneous material properties. Re-
cently several experimental groups have studied the prop-
erties of colloidal crystals using video and confocal mi-
croscopy at interfaces [3–5] and in full three-dimensional
samples [6]. Using computer analysis one combines the
advantages of scattering and direct observation: One can
observe a carefully chosen part of an experimental system
and then study the mode structure of thermally excited
fluctuations. It is particularly interesting to work deeply
within a three dimensional sample [7–10] because one can
be sure that surface perturbations to the properties are
weak.

However, the measurement of fluctuations rather than
just the mean positions of the particles is technically diffi-
cult: The scan must be fast in order to freeze the particle
motion during the acquisition of a frame. Because of the
constraints several groups have chosen to perform obser-
vations on single confocal slices, rather than scanning the
full three dimensional volume. The microscope resolves
the motion of the colloidal particles within a single plane
of the crystal structure–typically the plane (1, 1, 1). The
sample is filmed for several minutes and the matrix of cor-

relations is generated within the slice. Many thousands of
frames are required in order to generate good fluctuation
statistics. Experimentalists have studied weakly [10] or
strongly disordered [8,11] materials with the hope of bet-
ter understanding glassy dynamics, and characterizing the
disorder via the projected fluctuation properties including
the spectrum [8], the eigenvectors [7] and the effective dis-
persion relations [10]. We show here that even in the case
of ordered elastic materials a number of interesting fea-
tures appear. Exceptional behaviour in disordered mate-
rials should thus be defined with respect to the conclusions
we present here. Observation of non-standard exponents
for correlations within the slice can not be interpreted im-
mediately as evidence of exotic or glassy behaviour.

Our paper aims to calculate the effective theory which
best describes the fluctuations of such a two-dimensional
slice of a larger three-dimensional sample, in order to
be able to easily work back from the observed two-
dimensional correlations to three-dimensional material
constants. The link between these elastic constants is
given in Eqs. (14) below, which is the main result of the
paper. The calculation of the projected properties will be
based on the following principles: At large length scales
a colloidal crystal is described by an effective elastic the-
ory [1,4,12]; such an elastic theory leads to Gaussian fluc-
tuations. Gaussian systems are rather special in that they
allow one to exactly trace out degrees of freedom leading
to a new effective theory which is also Gaussian in nature.
This effective theory requires, however, effective renormal-
ized couplings. Arguments due to Peierls [13] immediately
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show that the final theoretical description of an elastic slice
must be unusual: A two-dimensional elastic solid has di-
verging fluctuations in the positions of individual particles,
whereas the slice of the three-dimensional solid must have
bounded fluctuations. The effective theory describing the
slice can not be a simple variation on standard elasticity
theory, we understand at once that anomalous dispersion
relations are to be expected.

Indeed we will show that while standard elasticity gives
rise to a scaling of the elastic energy in q2 as a function
of the wavevector, q, the projected effective theory for the
confocal slice is characterized by an effective dispersion
relation in |q|. We give explicit analytic expressions for
the prefactors in the dispersion law as a function of the
three-dimensional elastic moduli, see Eqs. (14) below, al-
lowing one to deduce the three-dimensional properties from
measurements on the slice. The procedure described in
this letter, albeit applied to elasticity, is sufficiently gen-
eral that similar scalings in |q| should be observed in very
different projected systems, such as in Stokesian hydrody-
namics.

We begin by linking the fluctuations in an elastic solid
to the static elastic Green function of the medium. We
then show how this Green function can be projected into a
single layer, to produce an effective theory for the observed
slice. We have performed extensive numerical simulations,
which we compare with the analytic theory.

Let us now consider a three-dimensional cubic crystal.
Under small deformations the system is characterized by
the displacement vector ui and the symmetric homoge-
neous tensor of displacement gradients uij [14]. The elas-
tic energy is then written as a quadratic form in uij which
respects the cubic symmetry of the crystal. This quadratic
form is related to the elastic matrix [15]

D̂ik(k) =
[
λδijδkl + µ(δikδjl + δilδjk) + νSijkl

]
kjkl, (1)

with Lamé constants λ, µ and anisotropy ν.1 The hat
denotes a Fourier transform and summation over repeated
indices is assumed throughout the paper. The tensor S =∑3
p=1 e

(p)e(p)e(p)e(p), with ep unit vectors parallel to the
cubic axes of the crystal. The Green function of the static
elastic problem is then the inverse of the elastic tensor,

D̂ij(k)Ĝjk(k) = δij . (2)

One expresses the free energy in terms of the displacement
field

F [û] =
1

2

∑
k

ûi(k)D̂ij(k)ûj(−k). (3)

If the crystal is studied at a finite inverse temperature β,
this implies that the correlation in the fluctuation ampli-

1Note that if the reference configuration of the crystal is under
external stress, this stress appears explicitly in the elastic tensor [15].
A hard-sphere crystal is always under external pressure to be me-
chanically stable. The elastic constants in Eq. (1) implicitly contain
this pressure correction.

tudes is given by〈
ûi(k)ûj(−k)

〉
=

1

Z

∫
R3

dû e−βF [û]ûiûj = β−1Ĝij(k).

(4)
For each wavevector k, D̂ is a 3×3 matrix with eigenvalues
di(k) where the subscript i indicates a polarization state.
Following a convention usual in the experimental litera-
ture [4,7], we define the auxiliary variable ω2

i (k) = di(k).2

Instead of the full crystal, we now consider a crystal
layer observed in a confocal microscope. In the following,
Qαβ is the Green function reduced to two dimensions,
α, β ∈ {1, 2}, and x,q ∈ R2 are direct and reciprocal
vectors in reduced space, whereas their three-dimensional
counterparts are denoted r,k ∈ R3. Of course, neglect-
ing the third dimension does not change the correlations
within the layer; the real-space Green functions of the pro-
jected and of the full problem are the same.

From the Green function in the reduced space we then
perform an inverse, two-dimensional, transform to find the
effective dispersion relation for the observed slice. We wish
to describe the fluctuations in the two-dimensional plane
using a closed theory, calculating the two-dimensional
equivalent of the matrix D̂. The calculational route that
we will follow is

D̂ij(k) −→ Ĝij(k)
F−1

3−→ Gij(r)

−→ Qαβ(x)
F2−→ Q̂αβ(q) −→ D̂αβ(q), (5)

where Fl is a l-dimensional Fourier transform.
The Green function Ĝij(k) in three-dimensional recip-

rocal space follows from the inversion of the elastic ma-
trix D̂ij in Eq. (2). The result will have the following
tensorial form,

Ĝij(k) =
1

k2

[
A′ δij +A′′

kikj
k2

+A′′′Aij(k)
]
, (6)

where the prefactors A′, A′′, A′′′ are cubic scalars and are
not required to be isotropic; they may depend on the ori-
entation of k. The first two terms in the brackets are the
nearly isotropic part, while the third term Aij comprises
further anisotropic properties. An explicit form of the
latter can be obtained either by direct inversion of D̂ij us-
ing the Sherman–Morrison formula or in a more elaborate
way using bases for the space of all cubic tensors. The
scalar prefactors are determined from the linear system
of three equations which are obtained after multiplication
of Eq. (2) with δij , kikj/k

2, and Aij , respectively. The
Fourier transform has a similar tensorial structure,

Gij(r) =
1

4πr

[
B′ δij +B′′

rirj
r2

+B′′′Bij(r)
]
. (7)

Again, the cubic scalars B′, B′′, B′′′ depend on the orien-
tation of k and are obtained as the solution of a linear
system of equations.

2Notice that ω is not the angular velocity of a wave.
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The reduction to the two-dimensional Green func-
tion Qαβ(x) can now be performed in real space. We
firstly recognize that the result will be nearly isotropic,
since the crystal plane we project on is a hexagonal lat-
tice [14]. The Green function comprises two tensorial
parts3,

Qαβ(x) =
1

4πx

[
C ′(x)δαβ + C ′′(x)

xαxβ
x2

]
. (8)

where again the hexagonal scalar prefactors may depend
on the orientation of x. They are determined by pro-
jection of the three-dimensional Green function onto the
two-dimensional subspace. For doing this, we choose an
orthonormal basis (r(1), r(2),N), aligned such that N =
(1, 1, 1)/

√
3 is orthogonal to the plane we project on. We

now interpret x as a three-dimensional vector, denoted by
an overbar, x̄ =

∑2
α=1 xαr

(α). The two-dimensional iden-
tity tensor δαβ then becomes [δij −NiNj ] in three dimen-
sions. Reduction of Eqs. (8) and (7) by δαβ and xαxβ/x

2

and by their three-dimensional counterparts, allows to de-
termine the prefactors in Eq. (8),

2C ′(x) + C ′′(x)

4πx
=
[
δij −NiNj

]
Gij(x̄), (9a)

C ′(x) + C ′′(x)

4πx
=
x̄ix̄j
x2
Gij(x̄). (9b)

In the same way as in three dimensions, we obtain the re-
duced Green function in reciprocal space using the ansatz

Q̂αβ(q) =
1

2q

[
E′(q)δαβ + E′′(q)

qαqβ
q2

]
. (10)

During the manipulations from Eq. (6) to Eq. (10)
the scalar prefactors inherited the nontrivial vector-
dependence from each other. It is important to notice
that this dependence is restricted to the orientation of
the vectors, since we regard only the long-wavelength
limit, in which the elastic moduli in Eq. (1) are constants.
The dependence on the norm of the vector is written
out explicitly in Eqs. (6)–(10). In particular, the two-
dimensional Fourier transform of Q(x) ∼ 1/x led to the
scaling Q̂(q) ∼ 1/q.

Using only symmetry arguments, the scalar prefactors
in Eq. (10) cannot be expected to be fully isotropic or
even constants. In the numerical simulation described
below, we observe however that in the limit of small q
their angular dependence is negligible. Unfortunately, the
direct-space cubic Green function Gij(r) cannot be calcu-
lated explicitly, except for a few directions of higher sym-
metry [16]. A more practical way is to approximate the
cubic Green function by an appropriate isotropic one. Fe-
dorov [17, 18] provided an optimal way to do this, based
on slowness curves. He proposed the effective isotropic
moduli

λ̃ = λ+
ν

5
, and µ̃ = µ+

ν

5
, (11)

3If the external stress mentioned in note 1 were anisotropic, a
third tensorial term would be allowed by symmetry.

which give the optimal three-dimensional Green function

Ĝij(k) =
1

k2

[ 1

µ̃
δij −

λ̃+ µ̃

µ̃(λ̃+ 2µ̃)

kikj
k2

]
. (12)

The scalar prefactors in this and in the other Green func-
tions are constants; A′ and A′′ in terms of µ̃, λ̃ can be
read off Eq. (12); A′′′ = B′′′ = 0 by isotropy; for the oth-
ers, we find B′ = C ′ = A′ + A′′/2, B′′ = C ′′ = −A′′/2,
E′ = A′, and E′′ = A′′/2. The latter two give the isotropic
projected Green function from Eq. (10), which we choose
here to write in its longitudinal/transverse form

Q̂αβ(q) =
1

2µ̃q

(
δαβ−

qαqβ
q2

)
+

1

q

λ̃+ 3µ̃

4µ̃(λ̃+2µ̃)

qαqβ
q2

. (13)

The effective elastic matrix D̂αβ(q) of the projected two-
dimensional slice, which is the inverse of this Green func-
tion, thus predicts the following effective dispersion rela-
tions:

ω2
⊥ = 2µ̃ q (transverse),

ω2
‖ =

4µ̃(λ̃+2µ̃)

λ̃+ 3µ̃
q (longitudinal).

(14)

These equations explain the anomalous (non-Debye) scal-
ing of the projected fluctuations, where the auxiliary vari-
ables ω are proportional to

√
q at long wavelengths, rather

than q in standard elastic theory. The scaling is the same
for all branches. The prefactors are here given explicitly in
terms of isotropic approximations of the cubic elastic mod-
uli for the hexagonal (1, 1, 1) plane in the face centered cu-
bic crystal. For other modes and other orientations of the
crystal explicit expressions are difficult to obtain, but nu-
merical methods can help [19]. These simple expressions
can be used by the experimentalist to obtain quantitative
information on the three-dimensional elastic properties by
studying only the two-dimensional slice.

The distinction between the longitudinal and transverse
branches has already been noted in the experimental re-
ports [9, 10], which however do not try to fit the experi-
mental prefactors in order to measure three-dimensional
properties.

To better understand the limits of our theoretical cal-
culation we performed a molecular dynamics simulation
with N = 4, 147, 200 particles organized in a face-centred
cubic crystal, with a volume fraction φ = 0.57. We used
event driven methods [20] because of their efficiency and
also their long-time stability. The periodic simulation box
contained N1 ×N2 ×N3 = 160× 160× 162 particles and
had a skew shape, aligned with the Bravais lattice. This
choice allows easy data analysis since the simulation box is
also aligned with the slice direction (1, 1, 1), and it avoids
ambiguities in the definition of the reciprocal vectors k.

In order to study the mode structure of fluctuations we
calculated and recorded the time average 〈ûi(k)ûj(−k)〉 in
three dimensions and deduced the polarization eigenstates
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Figure 1: Inset: Full, three-dimensional dispersion curves ωi/k
used to extract the three elastic constants of a cubic crystal.
We plot the longitudinal and transverse modes in the direc-
tions (1, 0, 0) (red), (1, 1, 0) (blue) and (1, 1, 1) (black). The
upper curves are longitudinal. For the orientations (1, 0, 0)
and (1, 1, 1) the transverse modes are degenerate. Main curves:
Dispersion relations in the confocal cut evaluated for the direc-
tions (1, 0), (2, 1), (3, 1), (4, 1) with respect to the hexagonal
Bravais lattice. The lines are the analytic prediction for the
long-wavelength limit, Eqs. (14) and (11). 58, 000 hours of
computer time.

by diagonalizing the three dimensional matrix of corre-
lations measured for each k. For the three-dimensional
modes we find the expected scaling di(k) ∼ k2 so that
ωi ∼ k. Thus when we plot ωi/k as a function of k (in-
set of Fig. 1) we can relate the small wavevector intersect
to the three-dimensional isothermal elastic constants in
Eq.(1). The transverse and longitudinal dispersion curves
are then uniquely identified by their degeneracy4, and they
contain sufficient information to extract the three indepen-
dent elastic constants of a cubic crystal [21]. We find the
numerical values λ, µ, ν = 42.8, 51.8,−53.8 Units are cho-
sen such that diameter, mass of all particles, and kT are
unity.

We now repeat the analysis for the sliced fluctua-
tions of the crystal, 〈ûα(−q)ûβ(q)〉, using the hexagonal
(1, 1, 1) planes to reproduce the experimental situation of
[7, 10, 22], and extract the corresponding eigenvalues and
auxiliary variables, ωi(q), from the resulting 2× 2 matri-
ces. The result is plotted in the main figure of Fig. 1. We
see that two branches are important at long wavelengths,
and that as predicted in our analytic theory the disper-
sion relation for the modes are of the form ω2

i (q) ∼ q.
Anomalous projected dispersion curves have already been
observed experimentally in both disordered and crystalline
materials [10, 22]. Using the effective elastic constants of
Eqs. (11) together with the dispersion law eq. (14), we
calculate the prefactors to this law and plot the results as
the lines in Figure 1. The theoretical and measured curves
agree to within 3%. We interpret these discrepancies as

4see page 353 of Ref. [15]
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Figure 2: Inset: full dispersion curves for a two-dimensional
hexagonal system. The upper curves are longitudinal, the
lower ones are transverse; directions: red (1, 0), blue (2, 1),
green (3, 1), black (4, 1). Main plot: Effective dispersion re-
lation of a one-dimensional slice in the (1, 0) direction, com-
pared to the theoretical prediction (solid line). Simulation of
400 × 400 particles, φ = 0.85.

being due to the anisotropy of the crystal. We note that a
face-centred cubic crystal with nearest-neighbour interac-
tions is predicted in linear elasticity to have λ/µ = 1 and
ν/µ = −1, see Eq. (12.7) of [23]. Our simulations find
λ/µ = 1.21 and ν/µ = −1.26.

The use of the Fedorov form for the effective elastic
constants is an uncontrolled approximation. To see to
what degree the difference between theory and simula-
tion is due to this approximation we also performed cal-
culations and simulations of a two-dimensional ensem-
ble of disks assembled in a hexagonal lattice projected
onto a line. Since the two-dimensional elastic theory is
isotropic [14] one can perform the projection without Fe-
dorov’s approximation within linear elasticity. We mea-
sure again the two-dimensional dispersion curves in the
inset of Fig. 2, and find a similar effective theory with
ω2 = 4qµ(λ + 2µ)/(λ + 3µ) for the projection, which is
the longitudinal branch of Eq. (14). The theoretical value
for the coefficient is again plotted as a line. We find that
there is no visible difference between the theory and the
simulations for the projected system.

To conclude, we have shown that if we wish to describe
an elastic slice observed in a confocal microscope as an
effective medium we must introduce an effective disper-
sion relation in |q| which is very different from that which
occurs in a normal two-dimensional medium with local
interactions. Indeed in real-space one is obliged to con-
sider that the system has long-ranged effective interac-
tions. These interactions allow one to avoid Peierls’ result
implying that a two-dimensional system should not dis-
play long-ranged order, due to the long-wavelength diver-
gence of the expression for the mean squared amplitude of
positional fluctuations: 〈u2〉 ∼

∫
1/q2 d2q. This logarith-

mically diverging result is replaced by a regular expression
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due to the change in the dispersion law.

We have shown that to good accuracy one is able to
relate the three-dimensional elastic constants and two-
dimensional elastic behaviour. Thus observations in two
dimensions can be used to deduce estimates of the three-
dimensional constants. It will be particularly interesting
in the future to study how disorder and glassiness modify
these effective properties [8]. It is interesting to note that
such an energy function in |q| was found in [24] where the
spreading of a droplet was expressed as the effective dy-
namics of a contact line. Again we are in the presence of
a system projected to lower dimensions.
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